ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于遺傳算法和神經(jīng)網(wǎng)絡(luò)的泵站經(jīng)濟運行研究
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    以泵站總耗能最小為目標(biāo),, 建立了葉片可調(diào)節(jié)泵站站間和站內(nèi)經(jīng)濟運行優(yōu)化數(shù)學(xué)模型,采用遺傳算法應(yīng)用Matlab語言實現(xiàn)優(yōu)化計算,。對江都第4站1999年實際運行資料進(jìn)行優(yōu)化計算,,總消耗功率比經(jīng)驗操作可減小3.39%左右,。針對泵站的流量和揚程變化頻繁而一般的優(yōu)化計算方法速度較慢的問題,,以仿真優(yōu)化結(jié)果為樣本,,利用人工神經(jīng)網(wǎng)絡(luò)對相似工況進(jìn)行預(yù)測,,預(yù)測結(jié)果平均誤差為1.99%,。遺傳算法和神經(jīng)網(wǎng)絡(luò)聯(lián)合應(yīng)用,,求解精度和可靠性較高,是解決泵站優(yōu)化運行問題的有效方法,。

    Abstract:

    Aimed at the minimal energy consumption, the mathematical model for adjustable-blade pumps or pumping stations was established. Using the method of genetic algorithms and Matlab, the data of Jiangdu drainage and irrigation station were studied, the results showed that 3.39% energy could be save comparing with its actual energy consumed in the same year. Because the flowrate and head of pump station was changing frequently and the conventional optimal calculation method often takes long time, the author proposed artificial neural networks model to predict movement patterns of the Jiangdu first pumping station, the result of optimal operation is used as sample. By combination with the genetic algorithms and artificial neural networks, the satisfactory result can be obtained. The new method is not only simple and easy to implement, but also has high accuracy and reliability, it is an effective way for solving the optimization problem in pump station.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

鄢碧鵬,杜曉雷,劉超,成立.基于遺傳算法和神經(jīng)網(wǎng)絡(luò)的泵站經(jīng)濟運行研究[J].農(nóng)業(yè)機械學(xué)報,2007,38(1):80-82.[J]. Transactions of the Chinese Society for Agricultural Machinery,2007,38(1):80-82.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期:
  • 出版日期:
文章二維碼