ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于支持向量機的缺陷紅棗機器視覺識別
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    在棗的干制過程中形成的油頭棗,、漿頭棗,、霉?fàn)€棗是最常見的缺陷棗,它們整體或局部顏色偏暗、偏黑,有必要通過機器視覺技術(shù)將其識別出來。在HIS顏色空間中,提取H的均值和均方差作為紅棗的顏色特征值,利用支持向量機識別缺陷紅棗,。實驗結(jié)果表明,識別準確率可以達到96.2%,,優(yōu)于人工神經(jīng)網(wǎng)絡(luò)的

    Abstract:

    89.4%,。During the production and storage of Chinese dates, some of them are easy to mould rot because of high water content. The defect dates appear darker than the normal ones. Based on support vector machine, the recognition of the defect Chinese date machine vision was proposed. After the acquisition of the Chinese dates images, the color model was changed from RGB to HIS. Then, the average value H and standard square deviation value σH of dates hue values were calculate. Depending on the two values, there was few overlaps between defect dates and normal ones in the plot of H and σH. Therefore, H and σH were treated as the feature parameters. Artificial neural network (ANN) and support vector machine (SVM) model were used to analysis the dates features respectively. The experimental results show that SVM has a better performance than ANN on distinguish defect Chinese dates from normal ones, and the correct recognition rate of SVM is 96.2%.

    參考文獻
    相似文獻
    引證文獻
引用本文

趙杰文,劉少鵬,鄒小波,石吉勇,殷小平.基于支持向量機的缺陷紅棗機器視覺識別[J].農(nóng)業(yè)機械學(xué)報,2008,39(3):113-115.[J]. Transactions of the Chinese Society for Agricultural Machinery,2008,39(3):113-115.

復(fù)制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期:
  • 出版日期:
文章二維碼