ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

長翅灰飛虱圖像邊緣的多區(qū)域多結(jié)構(gòu)檢測方法
DOI:
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    采用Sobel等4種常用方法檢測長翅灰飛虱翅膀,、爪子等多細節(jié)邊緣時,會出現(xiàn)邊緣不明顯,、噪聲干擾大等問題,。采用形態(tài)學(xué)單結(jié)構(gòu)腐蝕邊緣檢測也不理想,其邊緣間斷數(shù)和像素損失率最小值分別為10和0.689%,。為此,,對長翅灰飛虱圖像先進行區(qū)域劃分,以使單個區(qū)域的檢測得到簡化,,并針對劃分后的各個區(qū)域采用形態(tài)學(xué)多結(jié)構(gòu)方法構(gòu)造了膨脹腐蝕型邊緣檢測算子進行邊緣檢測,。試驗結(jié)果表明:這種劃分區(qū)域并結(jié)合多結(jié)構(gòu)的方法能提高對長翅灰飛虱邊緣的檢測能力,其邊緣間斷數(shù)和像素損失率最小值分別為

    Abstract:

    3和0.554%,。 When the four conventional edge detection methods such as the Sobel are applied to detect the multiple-structure edges of the Long Wing Laodelphax Striatellus (Fallen) image including the wing and the claw, it will be influenced by the pixels noise and the edge will not be clear. Also the morphology of erode single element edge detection method are adopted and the result is not ideal, as the breakpoints is 10 and the minimum loss rate of the pixels is 0.689%. In order to improve the ability for detecting the edge, the image was divided into several areas due to the multi-edges so that the edge detection in every area was simplified. Subsequently, the erode with dilate edge detecting operators was constructed, which could be used to detect the different edges in every areas. The results indicate that the multi-areas combined with morphology multi-structures method for detecting the Long Wing Laodelphax Striatellus (Fallen) edge is better, and the breakpoints is 3 and the minimum loss rate of the pixels is 0.554%.

    參考文獻
    相似文獻
    引證文獻
引用本文

邱白晶,程麒文,陳國平,姚克兵,陳樹人.長翅灰飛虱圖像邊緣的多區(qū)域多結(jié)構(gòu)檢測方法[J].農(nóng)業(yè)機械學(xué)報,2008,39(7):119-123.[J]. Transactions of the Chinese Society for Agricultural Machinery,2008,39(7):119-123.

復(fù)制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期:
  • 出版日期:
文章二維碼