ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于FCM離散化的粗集權(quán)重在糧蟲可拓分類中的應(yīng)用
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    糧蟲的識別屬于參數(shù)多,、混合度大的分類問題,,特征客觀權(quán)重的自動(dòng)確定是糧蟲可拓分類中的重要環(huán)節(jié),。提出了用聚類數(shù)評價(jià)函數(shù)自適應(yīng)確定聚類數(shù)目,,用FCM進(jìn)行聚類分析,,并依據(jù)最大隸屬度原則對實(shí)值特征進(jìn)行離散化處理,。引入粗集理論中屬性重要度的概念,,自動(dòng)確定糧蟲特征的客觀權(quán)重,,并對糧倉中危害嚴(yán)重的9類糧蟲進(jìn)行了可拓分類,,識別率達(dá)到93%,,證實(shí)了基于FCM離散化的粗集權(quán)重在糧蟲可拓分類中應(yīng)用的可行性。

    Abstract:

    The recognition of the stored-grain pests is a multi-feature and multi-compound degree classification of various pests. It is very important to determine the objective weights of features automatically in the classification of the stored grain pests based on extension theory. The self-adapting assessment function of the number of the clustering, clustering analysis using the FCM, and discrete process of the real features based on the maximum degree of membership were put forward. Subsequently, the degree of the importance for attributes from rough sets theory was introduced and the objective weights of features for the stored-rain pests were determined automatically. Finally, the familiar nine categories of the store-grain pests in grain-depot were recognized by a classifier based on the extension decision theory. The results show that the correct identification ratio is 93% and the rough sets weights application in the extension classification of the stored-grain pests is feasible. 

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

張紅濤,毛罕平.基于FCM離散化的粗集權(quán)重在糧蟲可拓分類中的應(yīng)用[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2008,39(7):124-128.[J]. Transactions of the Chinese Society for Agricultural Machinery,2008,39(7):124-128.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期:
  • 出版日期:
文章二維碼