ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于小波神經(jīng)網(wǎng)絡(luò)的切削刀具磨損識別
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    提出了一種基于小波神經(jīng)網(wǎng)絡(luò)的切削刀具狀態(tài)監(jiān)測方法, 在采集切削加工功率信號的基礎(chǔ)上,,利用小波分解方法提取反映刀具磨損狀態(tài)的信號特征量,,利用小波神經(jīng)網(wǎng)絡(luò)的非線性模型和學(xué)習(xí)機(jī)制,實現(xiàn)刀具磨損狀態(tài)的在線監(jiān)測;針對多輸入輸出問題帶來的網(wǎng)絡(luò)規(guī)模大,、收斂速度慢等問題, 提出應(yīng)用粒子群算法優(yōu)化小波神經(jīng)網(wǎng)絡(luò)的方法, 從而簡化小波神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)并加快收斂速度,。仿真和應(yīng)用實例證明,,該方法比傳統(tǒng)的基于BP的小波神經(jīng)網(wǎng)絡(luò),、GA優(yōu)化的小波神經(jīng)網(wǎng)絡(luò)估計準(zhǔn)確率高,消耗時間短,。

    Abstract:

    Wavelet neural network (WNN) is used widely in tool wear detection, but the curse of dimensionality and shortage in the responding speed and learning ability is brought about by the traditional models. An improved WNN algorithm which combined with modified particle swarm optimization (PSO) was presented to overcome the problems. Based on the cutting power signal, the method has been used to estimate the tool wear. The Daubechies-wavelet was used to decompose the signals into approximation and details. The energy and square-error of the signals in the detail levels was utilized as characters which indicated tool wear, the characters were input to the trained WNN to estimate the tool wear. Compared with BP neural network, conventional WNN and genetic algorithm-based WNN, a simpler structure and faster converge WNN was obtained by the new algorithm, and the accuracy for estimate tool wear has been tested by simulation and experiments.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

黃華,李愛平.基于小波神經(jīng)網(wǎng)絡(luò)的切削刀具磨損識別[J].農(nóng)業(yè)機(jī)械學(xué)報,2008,39(8):173-177.[J]. Transactions of the Chinese Society for Agricultural Machinery,2008,39(8):173-177.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期:
  • 出版日期:
文章二維碼