ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于模擬退火算法—支持向量機的儲糧害蟲識別分類
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    將模擬退火算法應(yīng)用于糧蟲圖像識別中支持向量機分類器參數(shù)C和g的優(yōu)化,,并與網(wǎng)格搜索法優(yōu)化結(jié)果進行了對比,結(jié)果表明參數(shù)優(yōu)化速度提高了3.91倍,,分類器的識別率提高了5.56%,。應(yīng)用SAA—SVM分類器對糧倉中危害嚴(yán)重的9類糧蟲進行了自動分類,,識別率達到95.56%,,證實了基于SAA—SVM的分類器對糧蟲進行自動分類是可行的,。

    Abstract:

    The design of the classifier is an important part for the image recognition system of the stored-grain pests. The simulated annealing algorithm (SAA) was proposed to optimize parameters C and g in the classifier based on support vector machine (SVM), and it was compared with the grid-search optimization. The results indicated that the optimizing efficiency was improved about 3.91 times, and the recognition ratio of the SVM classifier was raised by 5.56%. The nine species of the stored-grain pests in grain-depot were automatically recognized by the classifier based on simulated annealing algorithm and support vector machine, the correct recognition ratio was over 95.56%. The experimental results prove that the method is practical and feasible.  

    參考文獻
    相似文獻
    引證文獻
引用本文

胡玉霞,張紅濤.基于模擬退火算法—支持向量機的儲糧害蟲識別分類[J].農(nóng)業(yè)機械學(xué)報,2008,39(9):108-111.[J]. Transactions of the Chinese Society for Agricultural Machinery,2008,39(9):108-111.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期:
  • 出版日期:
文章二維碼