ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

采摘機器人基于支持向量機蘋果識別方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對目前蘋果采摘機器人果實識別過程誤差大,、處理時間長等問題,應(yīng)用支持向量機(SVM)方法對蘋果果實進行識別。首先采用矢量中值濾波法對蘋果彩色圖像進行預(yù)處理,,然后運用區(qū)域生長算法和顏色特征相結(jié)合的方法進行圖像分割,,最后分別對蘋果彩色圖像的顏色特征,、幾何形狀特征進行提取,,并用支持向量機的模式識別方法識別蘋果果實,。實驗結(jié)果表明:支持向量機識別方法的識別性能優(yōu)于神經(jīng)網(wǎng)絡(luò)方法,;綜合顏色特征和形狀特征的支持向量機識別方法對蘋果果實識別的正確率高于只用顏色特征或形狀特征的正確率,。

    Abstract:

    The critical task of the robot vision system in the apple harvesting robot is to recognize and locate each single apple. To solve recognition problems such as the big error, too much calculation and time consuming, a new recognizing method, support vector machine (SVM) was applied to improve recognition accuracy and efficiency. Firstly, vector median filter method was used to remove the color images noise of apple fruit. Secondly, segmentation of the images based on region growing method and color properties was done. At last, color properties and shape properties of color image were extracted, and the classification method of SVM for recognition of apple fruit was used. Experimental results indicate that the classification performance of SVM is better than that of neural networks. Recognition rate of apple fruit based on SVM combined with color and shape properties is higher than only using the color or shape properties. 

    參考文獻
    相似文獻
    引證文獻
引用本文

王津京,趙德安,姬偉,張超.采摘機器人基于支持向量機蘋果識別方法[J].農(nóng)業(yè)機械學(xué)報,2009,40(1):148-151.[J]. Transactions of the Chinese Society for Agricultural Machinery,2009,40(1):148-151.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期:
  • 出版日期:
文章二維碼