ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

棉花異性纖維圖像分割方
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:


Image Segmentation of Foreign Fibers in Lint
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    通過直方圖分析,,建立了適用于棉花異性纖維圖像的增強模型,;提出了改進(jìn)Otsu法,并對Otsu方法的分割效果進(jìn)行了深入分析,。實驗結(jié)果表明,,所有棉花異性纖維圖像的灰度直方圖基本都呈單峰特性,;所建的增強模型可以顯著提高異性纖維目標(biāo)與皮棉背景之間的對比度;改進(jìn)Otsu法將最佳閾值的搜索范圍從0~255縮減到150~230,,使此環(huán)節(jié)的計算速度提高了

    Abstract:

    2倍多,。In computer-vision-based systems for detecting foreign fibers, an efficient segmentation method is vital for improving the speed and precision of detection. An image enhancement model was presented based on histogram analysis, an improved Otsu's method was proposed for segmenting gray images of foreign fibers, and the segmentation results were analyzed in detail. The results indicate that all histograms of gray images of foreign fibers are of single peak, and the contrast between object and background can be remarkably enhanced by the enhancement model presented. The Otsu's method is effective for images of sheet foreign fibers, but does not work well for images of wirelike or villiform fibers, as some background pixels with gray values closed to the threshold are easily segmented as object pixels by mistake. But after the images were enhanced, the satisfactory segmentation results were achieved. The improved Otsu's method reduced the searching range for calculating optimal threshold from 0~255 to 150~230. The calculating speed in this stage was improved more than twice.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

楊文柱,李道亮,魏新,康玉國,李付堂.棉花異性纖維圖像分割方[J].農(nóng)業(yè)機械學(xué)報,2009,40(3):156-160. Image Segmentation of Foreign Fibers in Lint[J]. Transactions of the Chinese Society for Agricultural Machinery,2009,40(3):156-160.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期:
  • 出版日期:
文章二維碼