ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于粗糙集與支持向量機的禽蛋蛋殼無損檢
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:


Testing of Eggshell Based on Rough Sets and Support Vector Machine
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對當前禽蛋蛋殼無損檢測系統(tǒng)存在檢測精度不高的問題,,提出粗糙集和支持向量機相結合的方法進行分類器的設計。首先,,基于粗糙集理論對特征參數(shù)集進行屬性約簡,,在約簡過程中,利用模糊C均值聚類算法對特征參數(shù)進行量化,,并基于屬性重要性的啟發(fā)式搜索對條件屬性進行約簡,;然后,,在屬性約簡的基礎上完成支持向量機分類器的訓練,在訓練過程中,,通過交叉驗證法對分類器模型參數(shù)進行了優(yōu)化,。實驗結果表明該方法的分類準確率能夠達到94.6%,,具有良好的工程應用價值。

    Abstract:

    Aiming at solving the problem of low accuracy existing in the nondestructive testing system for eggshell, a new hybrid scheme of rough sets and support vector machine for classifier designing was proposed. First, redundant characteristic parameters were reduced based on the rough sets theory. During reducing process, the characteristic parameters were quantified by fuzzy C means clustering algorithm, and the condition attributes were reduced via heuristic search according to their own importance. And then, the classifier was trained by support vector machine based on the reduction result. During training process, the classifier model parameters were optimized by cross validation. The experiments show that the accordance rate of the proposed method can reach 94.6%, which has great engineering application perspective.

    參考文獻
    相似文獻
    引證文獻
引用本文

何麗紅,劉金剛,文友先.基于粗糙集與支持向量機的禽蛋蛋殼無損檢[J].農(nóng)業(yè)機械學報,2009,40(3):167-171. Testing of Eggshell Based on Rough Sets and Support Vector Machine[J]. Transactions of the Chinese Society for Agricultural Machinery,2009,40(3):167-171.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期:
  • 出版日期:
文章二維碼