ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于NIRS的反芻動(dòng)物飼料中肉骨粉判
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:


Analysis of Meat and Bone Meal Content in Ruminant Feed Based on NIRS
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    收集國內(nèi)常用的,、具有代表性的精料補(bǔ)充料和肉骨粉,,制備定標(biāo)集樣品235個(gè),,外部驗(yàn)證集樣品152個(gè)。在400~2498nm波長范圍內(nèi)進(jìn)行近紅外光譜掃描,,選擇合適的光譜預(yù)處理方法和光譜范圍,采用SIMCA方法和DPLS方法分別建立判別分析模型,。建立的SIMCA判別分析模型對(duì)外部驗(yàn)證集的正確判斷率為96.1%,,建立的DPLS判別分析模型對(duì)外部驗(yàn)證集的正確判斷率為100%。與NIRS定量分析精料補(bǔ)充料中MBM的方法相比,,定性分析模型能準(zhǔn)確判斷飼料樣品是否摻有

    Abstract:

    MBM,。Representative ruminant concentrate supplement and MBM samples were collected, and 235 calibration samples and 152 external validation samples were prepared. The spectra were scanned from 400~2498nm. The effect of spectrum pretreatment methods and spectrum region on the calibration results was considered. The calibration equations were established by SIMCA (soft independent modeling of class analogies) and DPLS (discriminant partial least squares) respectively. For external validation set, the accurate discriminant rate of SIMCA method was 96.1%, and the accurate discriminant rate of DPLS method was 100%. Comparing with NIRS quantitative analysis model of MBM in ruminant concentrate supplement, NIRS discriminant analysis model can detect if ruminant concentrate supplement was adulterated with MBM or not. 

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

楊增玲,韓魯佳,李瓊飛,樊霞,蘇曉鷗.基于NIRS的反芻動(dòng)物飼料中肉骨粉判[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2009,40(7):124-128. Analysis of Meat and Bone Meal Content in Ruminant Feed Based on NIRS[J]. Transactions of the Chinese Society for Agricultural Machinery,2009,40(7):124-128.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期:
  • 出版日期:
文章二維碼