ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于PSO與K-均值算法的農業(yè)超綠圖像分割方
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:


Extra-green Image Segmentation Based on Particle Swarm Optimization and K-means Clustering
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為了解決K-均值算法對農業(yè)圖像中常用的超綠特征2G—R—B圖像分割效果不佳的缺點,,提出一種基于微粒群與K均值算法的圖像分割方法,。先用K均值算法對圖像進行快速分類,,然后將分類結果作為其中一個微粒的結果,利用微粒群算法計算,,最后用K-均值算法在新的分類基礎上計算新的聚類中心,更新當前的位置,,以得到最優(yōu)的圖像分割閾值,。試驗結果表明,改進算法對超綠特征2G—R—B圖像能夠準確分割目標,,且對不同類型的農業(yè)超綠圖像具有較好的適應性,。

    Abstract:

    In order to solve the disadvantage of image segmentation by K-means clustering to extra-green character used to be adopted in agricultural images, an image segmentation method based on the particle swarm optimization and the K means clustering was proposed. Firstly, image pixels value was fast clustered with the K-means clustering. Regarding the results as the position of a particle, PSO can be used and the new class centers also can be re-calculated with the K means clustering. Subsequently,the position of all particles got updated and the optimal threshold was obtained. Experimental results proved that the improved algorithm was an effective method for segmenting the object accurately from images, and applicable for various kinds of agricultural images with extra-green character.

    參考文獻
    相似文獻
    引證文獻
引用本文

趙博,宋正河,毛文華,毛恩榮,張小超.基于PSO與K-均值算法的農業(yè)超綠圖像分割方[J].農業(yè)機械學報,2009,40(8):166-169. Extra-green Image Segmentation Based on Particle Swarm Optimization and K-means Clustering[J]. Transactions of the Chinese Society for Agricultural Machinery,2009,40(8):166-169.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期:
  • 出版日期:
文章二維碼