ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于機器視覺的非結構環(huán)境下黃瓜目標特征識
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:


Acquisition of Cucumber Fruit in Unstructured Environment Using Machine Vision
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    提出了一種基于近紅外光譜成像技術的溫室黃瓜信息檢測方法。根據(jù)黃瓜的光譜反射特性,,選用特定波長的近紅外光譜圖像解決與背景顏色相近的果實信息表征,;利用圖像內(nèi)作物灰度分布差異確定果實所在區(qū)域,區(qū)域內(nèi)采用矩不變優(yōu)化閾值分割和特殊形態(tài)學模板濾波,,實現(xiàn)果實目標有效識別,;結合黃瓜物理性狀和紋理特征檢測果實的可抓取部位,,并引入形心主慣性軸思想確定果柄的切割點位置。實驗結果表明果實的正確識別率為93.3%,,抓取點,、切割點位于有效區(qū)域的幾率分別為

    Abstract:

    96.7%、93.1%,。A machine vision approach for the detection of greenhouse cucumbers with near-infrared spectral imaging was presented. Firstly, a spectral image using certain near-infrared wavelength was applied to resolve the fruit information representation within the similar-color background. Secondly, fruit was recognized based on the following steps: region partition according to gray distribution of vertical histogram, optimized threshold of invariable intensity moment on divided local image, noise elimination using specified morphological template. Thirdly, the region for robotic grasping of cucumber fruit was determined by texture feature analysis and the cutting point was located with inertia axis principle. The experimental results showed that the correct recognition rate of fruit is 93.3%, as well as the rates of the grasping point and cutting point within the effective range are 96.7% and 93.1% respectively.

    參考文獻
    相似文獻
    引證文獻
引用本文

袁挺,張俊雄,李偉,任永新.基于機器視覺的非結構環(huán)境下黃瓜目標特征識[J].農(nóng)業(yè)機械學報,2009,40(8):170-174. Acquisition of Cucumber Fruit in Unstructured Environment Using Machine Vision[J]. Transactions of the Chinese Society for Agricultural Machinery,2009,40(8):170-174.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期:
  • 出版日期:
文章二維碼