ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

電動助力轉(zhuǎn)向系統(tǒng)全工況建模及試驗驗證
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:


Verifying of EPS at All Operating Conditions
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為克服以往車輛電動助力轉(zhuǎn)向(EPS)模型的不足,,結(jié)合簡化的原地轉(zhuǎn)向輪胎模型和基于Doguff輪胎模型的七自由度整車模型,建立了轉(zhuǎn)向系統(tǒng)轉(zhuǎn)向及回正時的力學模型,。為得到車輛的轉(zhuǎn)向力矩和回正性能特性,,對無助力轉(zhuǎn)向全工況(原地及行駛條件下)轉(zhuǎn)向操縱轉(zhuǎn)矩和回正的轉(zhuǎn)向盤殘留轉(zhuǎn)角進行仿真,,試驗結(jié)果表明所設(shè)計的模型可以準確描述轉(zhuǎn)向操縱轉(zhuǎn)矩和回正特性,。進而設(shè)計了基于滑模變結(jié)構(gòu)電動助力轉(zhuǎn)向控制策略進行助力和回正控制,,仿真和實車驗證結(jié)果表明,,基于該模型設(shè)計的控制策略可以有效降低駕駛員的操縱轉(zhuǎn)矩和提高車輛的回正性能。

    Abstract:

    In order to overcome the shortage of the previous model of EPS, the dynamic model for steering system in steering and aligning condition was established, based on the combination of tire model of parking steer and 7 degree-of-freedom vehicle model with Doguff tyre model. For obtaining the characteristic of vehicle steering moment and return ability, the steer torque and return ability of manual steering system was analyzed at all operating conditions. The simulation result and road test showed the model built can accurately describe steering torque and return ability well and truly. Finally, a control strategy for controlling power assistant and self-align was framed based on sliding mode control theory (SMC). The simulation result and road test showed the sliding mode control strategy based on the model improved the steering easiness and vehicle self-align capability effectively. 

    參考文獻
    相似文獻
    引證文獻
引用本文

趙林峰,陳無畏,劉罡.電動助力轉(zhuǎn)向系統(tǒng)全工況建模及試驗驗證[J].農(nóng)業(yè)機械學報,2009,40(10):1-7. Verifying of EPS at All Operating Conditions[J]. Transactions of the Chinese Society for Agricultural Machinery,2009,40(10):1-7.

復(fù)制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期:
  • 出版日期:
文章二維碼