100)且(R>G)。通過提取柑橘個數(shù)、柑橘總周長,、柑橘總面積3個特征參數(shù),,分析了特征參數(shù)和柑橘單株產(chǎn)量之間的關(guān)系,。實驗證明,,經(jīng)過圖像分析后得出的柑橘數(shù)與柑橘單株產(chǎn)量之間的相關(guān)系數(shù)最高,達到0.97,,說明了利用圖像分析方法預(yù)測柑橘產(chǎn)量具有良好的應(yīng)用前景,。"/>

ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于圖像處理的柑橘測產(chǎn)方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:


Citrus Yield Based on Image Processing
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    利用機器視覺技術(shù)可以快速、無損預(yù)測柑橘產(chǎn)量,。采集了10幅生長中的柑橘果樹照片,,同時測量了每棵果樹的柑橘產(chǎn)量?;赗GB顏色模型,,對柑橘圖像進行分割,柑橘與背景的分割條件為(R-B>100)且(R>G),。通過提取柑橘個數(shù)、柑橘總周長,、柑橘總面積3個特征參數(shù),,分析了特征參數(shù)和柑橘單株產(chǎn)量之間的關(guān)系。實驗證明,,經(jīng)過圖像分析后得出的柑橘數(shù)與柑橘單株產(chǎn)量之間的相關(guān)系數(shù)最高,,達到0.97,,說明了利用圖像分析方法預(yù)測柑橘產(chǎn)量具有良好的應(yīng)用前景。

    Abstract:

    The estimation of citrus yield is important to citrus precision management. Fast non-destroyed measure could be achieved using machine vision technology. Ten images of citrus were used in this experiment and yield of each tree was measured in advance. The citrus image was segmented based on the RGB color model. The segment condition for citrus and background is: (R-B>100) & (R>G). The total number, the total perimeter and total area of citrus were computed from the segmented image. The relationship between each image parameter and citrus yield was analysis. The result of experiment shows that the correlation coefficient between the total citrus number and the yield of citrus is 0.97 and indicates that it is has good prospect in the future.

    參考文獻
    相似文獻
    引證文獻
引用本文

張亞靜,鄧烈,李民贊,趙瑞嬌,何紹蘭,易時來.基于圖像處理的柑橘測產(chǎn)方法[J].農(nóng)業(yè)機械學(xué)報,2009,40(Z1):97-99. Citrus Yield Based on Image Processing[J]. Transactions of the Chinese Society for Agricultural Machinery,2009,40(Z1):97-99.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期:
  • 出版日期:
文章二維碼