ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于視覺感知特性的多聚焦圖像融合技
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:


of Image Fusion Algorithm Based on Human Visual Perception Feature
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對多聚焦圖像融合問題,,借鑒生物視覺特性和相關(guān)圖像處理理論,,提出了一種基于視覺感知特性的多聚焦圖像融合算法。該算法在對待融合的多聚焦圖像進行RGB分塊分解的基礎(chǔ)上,,采用視覺對比度模型以確定融合后圖像的選取準(zhǔn)則,。為了獲得最佳圖像融合效果,,采用免疫遺傳算法以指導(dǎo)圖像分塊,標(biāo)準(zhǔn)熵和標(biāo)準(zhǔn)偏差作為評價圖像融合質(zhì)量的的標(biāo)準(zhǔn),。實驗表明,,該算法具有較好的效果,能夠解決多聚焦圖像融合問題,。

    Abstract:

    To solve the problem of multi-focus image fusion, a new multi-focus image fusion algorithm based on the visual perception feature was proposed. Because the threshold of human visual contrast sensitivity was proportional to the image background brightness, the visual uniform parameter was adopted to separate clear objects from fuzzy objects obtained by different image sensors. Firstly, the image was decomposed at RGB level separately. Secondly, the R,G,B single gray image was divided into sub-blocks. Thirdly, the sub-blocks with higher uniform value were selected as the corresponding sub-blocks of fusion image. Then, the retained sub-blocks were reconstructed to compose the fusion image. The immune genetic algorithm was applied to calculate the optimal number of sub-blocks, and the image quality criterion data, root-mean-square error and image entropy, were chosen as the affinity function of the optimal algorithm. The results have shown that the image fusion algorithm proposed was suitable to multi-focus image fusion and easy to realize.

    參考文獻
    相似文獻
    引證文獻
引用本文

位耀光,王劍秦,李道亮,涂序彥.基于視覺感知特性的多聚焦圖像融合技[J].農(nóng)業(yè)機械學(xué)報,2009,40(Z1):206-209. of Image Fusion Algorithm Based on Human Visual Perception Feature[J]. Transactions of the Chinese Society for Agricultural Machinery,2009,40(Z1):206-209.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期:
  • 出版日期:
文章二維碼