ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

無人機遙感技術(shù)在精量灌溉中應用的研究進展
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學基金項目(51979233),、國家重點研發(fā)計劃項目(2017YFC0403203),、楊凌示范區(qū)產(chǎn)學研用協(xié)同創(chuàng)新重大項目(2018CXY-23)和高等學校學科創(chuàng)新引智計劃項目(B12007)


Review on UAV Remote Sensing Application in Precision Irrigation
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    以提高農(nóng)業(yè)用水效率為目標的精量灌溉是未來農(nóng)業(yè)灌溉的主要模式,精量灌溉的前提條件是對作物缺水的精準診斷和科學的灌溉決策,。用于作物缺水診斷和灌溉決策定量指標的信息獲取技術(shù)主要基于田間定點監(jiān)測、地面車載移動監(jiān)測及衛(wèi)星遙感,。無人機從根本上解決了衛(wèi)星遙感由于時空分辨率低而導致的瞬時拓延,、空間尺度轉(zhuǎn)換、遙感參數(shù)與模型參數(shù)定量對應等技術(shù)難題,,也克服了地面監(jiān)測效率低,、成本高、影響田間作業(yè)等問題,。近幾年的研究結(jié)果表明,,無人機遙感系統(tǒng)可以高通量地獲取多個地塊的高時空分辨率圖像,,使精準分析農(nóng)業(yè)氣象條件、土壤條件,、作物表型等參數(shù)的空間變異性及其相互關(guān)系成為可能,,為大面積農(nóng)田范圍內(nèi)快速感知作物缺水空間變異性提供了新手段,在精量灌溉技術(shù)應用中具有明顯的優(yōu)勢和廣闊的前景,。無人機遙感系統(tǒng)已經(jīng)應用在作物覆蓋度,、株高、倒伏面積,、生物量,、葉面積指數(shù)、冠層溫度等農(nóng)情信息的監(jiān)測方面,,但在作物缺水診斷和灌溉決策定量指標監(jiān)測方面的研究才剛剛起步,,目前主要集中在作物水分脅迫指數(shù)(CWSI)、作物系數(shù),、冠層結(jié)構(gòu)相關(guān)指數(shù),、土壤含水率、葉黃素相關(guān)指數(shù)(PRI)等參數(shù)估算的研究,,有些指標已經(jīng)成功應用于監(jiān)測多種作物的水分脅迫狀況,,但對于大多數(shù)作物和指標,模型的普適性還有待進一步研究,。給出了無人機遙感在精準灌溉技術(shù)中應用的技術(shù)體系,,并指出,為滿足不同尺度的高效率監(jiān)測和實現(xiàn)農(nóng)業(yè)用水精準動態(tài)管理的需求,,今后無人機遙感需要結(jié)合衛(wèi)星遙感和地面監(jiān)測系統(tǒng),,其中天空地一體化農(nóng)業(yè)水信息監(jiān)測網(wǎng)絡(luò)優(yōu)化布局方法與智能組網(wǎng)技術(shù)、多源信息時空融合與同化技術(shù),、作物缺水多指標綜合診斷模型,、農(nóng)業(yè)灌溉大數(shù)據(jù)等將是未來重點研究內(nèi)容。

    Abstract:

    Precision irrigation aiming at improving the agricultural water use efficiency is the main mode of future agricultural irrigation, with the accurate detection of crop water stress and the scientific irrigation decision being its prerequisite. For decades, fieldbased fixedpoint monitoring, onboard vehicle movement monitoring and satellite remote sensing were the information acquisition techniques for the quantitative detection of crop water stress and irrigation decisionmaking. The emergence of unmanned aerial vehicle (UAV) fundamentally solved the technical problems of satellite remote sensing caused by its low temporalspatial resolution, including instantaneous extension, spatial scale conversion, quantitative correspondence between remote sensing parameters and model parameters. At the same time, UAV remote sensing technology also solved the problems of ground monitoring methods, such as low efficiency and high cost. Research results in recent years showed that the UAV remote sensing system could obtain hightemporal resolution images of multiple plots with high throughput, making it possible to analyze the spatial variability of agrometeorological conditions, soil conditions, crop phenotypes and their mutual relationships accurately. It provided a new method for quickly sensing the spatial variability of crop water stress within a large area of farmland, which had obvious advantages and broad prospects in the application of precision irrigation. UAV remote sensing technology was successfully applied to obtain agricultural information, including fractional vegetation cover, plant height, lodging area, biomass, leaf area index and canopy temperature. However, study on quantitative indicator monitoring for crop water stress detection and irrigation decisionmaking has just started. At present, it mainly focuses on crop water stress index (CWSI), crop coefficient, canopy structural index, soil water content, PRI etc. Some of the above indicators were successfully applied to monitor the water stress status of various crops, but for most crops and indicators, further study is needed to improve the universality of the model. The technical process and key points of UAV application in precision irrigation were given. To meet the needs of highefficiency monitoring and accurate dynamic management of agricultural water at different scales, UAV remote sensing needs to be combined with satellite remote sensing and ground monitoring systems in the future. The optimization layout method and intelligent networking technology of skyintegrated agricultural water information monitoring network, fusion and assimilation technology of multisource information, comprehensive diagnosis model with multiple water stress indicators, and big data on agricultural irrigation would be the hotspots of future research.

    參考文獻
    相似文獻
    引證文獻
引用本文

韓文霆,張立元,牛亞曉,史翔.無人機遙感技術(shù)在精量灌溉中應用的研究進展[J].農(nóng)業(yè)機械學報,2020,51(2):1-14. HAN Wenting, ZHANG Liyuan, NIU Yaxiao, SHI Xiang. Review on UAV Remote Sensing Application in Precision Irrigation[J]. Transactions of the Chinese Society for Agricultural Machinery,2020,51(2):1-14.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2019-11-20
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2020-02-10
  • 出版日期:
文章二維碼