ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于遷移學(xué)習(xí)的卷積神經(jīng)網(wǎng)絡(luò)玉米病害圖像識(shí)別
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2017YFC0403203)和陜西省水利科技計(jì)劃項(xiàng)目(2014slkj-18)


Recognition of Corn Leaf Spot and Rust Based on Transfer Learning with Convolutional Neural Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為實(shí)現(xiàn)小數(shù)據(jù)樣本復(fù)雜田間背景下的玉米病害圖像識(shí)別,,提出了一種基于遷移學(xué)習(xí)的卷積神經(jīng)網(wǎng)絡(luò)玉米病害圖像識(shí)別模型,。在VGG-16模型的基礎(chǔ)上,設(shè)計(jì)了全新的全連接層模塊,,并將VGG-16模型在ImageNet圖像數(shù)據(jù)集訓(xùn)練好的卷積層遷移到本模型中,。將收集到的玉米病害圖像數(shù)據(jù)集按3∶1的比例分為訓(xùn)練集與測(cè)試集。為擴(kuò)充圖像數(shù)據(jù),,對(duì)訓(xùn)練集原圖進(jìn)行了旋轉(zhuǎn),、翻轉(zhuǎn)等操作?;跀U(kuò)充前后的訓(xùn)練集,,對(duì)只訓(xùn)練模型的全連接層和訓(xùn)練模型的全部層(卷積層+全連接層)兩種遷移學(xué)習(xí)方式進(jìn)行了試驗(yàn),結(jié)果表明,,數(shù)據(jù)擴(kuò)充和訓(xùn)練模型的全部層能夠提高模型的識(shí)別能力,。在訓(xùn)練模型全部層和訓(xùn)練集數(shù)據(jù)擴(kuò)充的條件下,對(duì)玉米健康葉,、大斑病葉,、銹病葉圖像的平均識(shí)別準(zhǔn)確率為95.33%。與全新學(xué)習(xí)相比,,遷移學(xué)習(xí)能夠明顯提高模型的收斂速度與識(shí)別能力,。將訓(xùn)練好的模型用Python開發(fā)為圖形用戶界面,可實(shí)現(xiàn)田間復(fù)雜背景下玉米大斑病與銹病圖像的智能識(shí)別,。

    Abstract:

    In order to realize the identification of corn disease images in complex field background for small data samples, a corneal disease image recognition model based on transfer learning was proposed. Based on the VGG-16 model, a new fully connected layer module was designed. The VGG-16 model was migrated to the model in the trained convolution layer of the ImageNet image data set. The collected corn disease image data set was divided into a training set and a test set according to a ratio of 3∶1. In order to expand the data set of the image, the original set of the training set was rotated, flipped, and the like. Based on the training set before and after the expansion, the two layers of the training model, the full connection layer and the training model, all the layers (convolution layer + full connection layer) were tested. The results showed that all the layers of the data expansion and training model can improve the recognition ability of the model. Under the condition of all the layers of the training model and the expansion of the training set data, the average recognition accuracy of the image of corn healthy leaves, large spot disease leaves and rust leaves was 95.33%. Compared with the new learning, transfer learning can significantly improve the convergence speed and recognition ability of the model. Finally, the trained model was developed into a visual user interface, which can realize the intelligent recognition of corn leaf spot and rust images in the complex background of the field.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

許景輝,邵明燁,王一琛,韓文霆.基于遷移學(xué)習(xí)的卷積神經(jīng)網(wǎng)絡(luò)玉米病害圖像識(shí)別[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2020,51(2):230-236,253. XU Jinghui, SHAO Mingye, WANG Yichen, HAN Wenting. Recognition of Corn Leaf Spot and Rust Based on Transfer Learning with Convolutional Neural Network[J]. Transactions of the Chinese Society for Agricultural Machinery,2020,51(2):230-236,253.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2019-05-25
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2020-02-10
  • 出版日期:
文章二維碼