ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

機(jī)器人智能化吊裝技術(shù)研究
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

國家自然科學(xué)基金項(xiàng)目(51575219)


Investigation on Intelligent Lifting Technology of Robot
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    鑒于OpenPose進(jìn)行肢體識別復(fù)雜度較高,提出基于TfPose完成人體骨架提取,,并采用神經(jīng)網(wǎng)絡(luò)集成學(xué)習(xí)方法對吊裝指令肢體信號進(jìn)行識別,,完成智能化吊裝操作。首先,,采用D-H法對吊裝機(jī)器人進(jìn)行正運(yùn)動學(xué)分析,,確定卷揚(yáng)機(jī)構(gòu)工作空間范圍,,并使用共形幾何代數(shù)方法求解其逆運(yùn)動學(xué),,完成吊裝機(jī)器人從當(dāng)前位置運(yùn)動到目標(biāo)位置的數(shù)學(xué)建模;然后,,基于TfPose獲取人體骨架向量和RGB骨架圖,,以BP神經(jīng)網(wǎng)絡(luò)和InceptionV3網(wǎng)絡(luò)為基分類器,采用神經(jīng)網(wǎng)絡(luò)集成學(xué)習(xí)方法確定最優(yōu)化權(quán)重,,完成吊裝指令肢體信號識別,;最后,將識別的吊裝指令肢體信號通過UDP通信傳送給吊裝機(jī)器人控制模塊,,以完成吊裝操作,。實(shí)驗(yàn)結(jié)果表明,該方法平均肢體識別精度達(dá)0977,,提高了吊裝效率,。

    Abstract:

    In view of the high complexity of limb recognition in OpenPose, it was proposed to complete the human skeleton extraction based on TfPose, and the neural network integrated learning method was used to perform limb recognition on the robot lifting instructions to complete the intelligent lifting operation. Firstly, the D-H method was used to perform the forward kinematics analysis of the hoisting robot to determine the working space range of the hoisting mechanism, and the inverse kinematics was solved by the conformal geometric algebra method. The hoisting robot was mathematically modeled from the current position to the target position; then it was obtained based on TfPose. The human skeleton vector and RGB skeleton map were based on BP neural network and InceptionV3 network. The neural network integrated learning method was used to determine the optimal weight to complete the hoisting signal identification. Finally, the identified hoisting command limb signal was transmitted to the hoisting robot through UDP communication. The module was controlled to complete the lifting operation. The experimental results showed that the average limb recognition accuracy of the method was 0977, which solved the large cargo lifting occasions such as ports, docks and mines, and greatly improved the hoisting and loading efficiency.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

倪濤,鄒少元,孔維天,黃玲濤,張紅彥,舒禮志.機(jī)器人智能化吊裝技術(shù)研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2020,51(2):402-409. NI Tao, ZOU Shaoyuan, KONG Weitian, HUANG Lingtao, ZHANG Hongyan, SHU Lizhi. Investigation on Intelligent Lifting Technology of Robot[J]. Transactions of the Chinese Society for Agricultural Machinery,2020,51(2):402-409.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2019-06-18
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2020-02-10
  • 出版日期:
文章二維碼