ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于形態(tài)非抽樣小波分解的滾動(dòng)軸承故障特征提取
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金資助項(xiàng)目(50675194)


Fault Feature Extraction of Rolling Element Bearing Based on Morphological Undecimated Wavelet Decomposition
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)滾動(dòng)軸承故障特征信息往往被強(qiáng)背景噪聲淹沒(méi)的問(wèn)題,提出采用基于多尺度差值形態(tài)濾波的形態(tài)非抽樣小波分解方法提取故障特征,。形態(tài)非抽樣小波分解具有形態(tài)學(xué)的形態(tài)濾波特性與小波分解的多分辨率特性,,通過(guò)非抽樣方式對(duì)信號(hào)進(jìn)行分解,,克服了傳統(tǒng)形態(tài)小波分解信息丟失的問(wèn)題,。結(jié)合差值形態(tài)濾波能夠提取信號(hào)沖擊成分的特點(diǎn),,構(gòu)造了一種基于多尺度差值形態(tài)濾波的形態(tài)非抽樣小波分解方法,,〖JP3〗并將其應(yīng)用于滾動(dòng)軸承故障特征的提取,。仿真與實(shí)例證明,,該方法可有效提取信號(hào)中的故障特征,,比傳統(tǒng)小波包分解效果更好。形態(tài)非抽樣小波分解算法只包含加減和極大,、極小運(yùn)算,,具有計(jì)算簡(jiǎn)單、快速等優(yōu)點(diǎn),,適用于滾動(dòng)軸承的在線監(jiān)測(cè)與故障診斷,。

    Abstract:

    Fault feature was always hidden by strong noise background in rolling element bearing fault signal. Based on morphological undecimated wavelet decomposition (MUWD), a novel approach was proposed to extract rolling element bearing fault feature. MUWD possess both the characteristic of morphological filter in morphology and multiresolution in wavelet transform. Signal length was maintained invariable and information loss could be avoided in MUWD. Multi-scale MUWD was developedbased on the characteristic of impulse feature extraction in difference morphological filter. The method was used to extract impulse feature in bearing fault signal. Experiment results showed that the presented method can achieve a better performance than traditional wavelet packet. MUWD algorithm includes addition, subtraction, maximum and minimum operations, and does not involve multiplication and division. It is suitable for on-line monitoring and fault diagnosis of bearing.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

黃兵鋒,沈路,周曉軍,劉莉.基于形態(tài)非抽樣小波分解的滾動(dòng)軸承故障特征提取[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2010,41(2):203-207. Huang Bingfeng, Shen Lu, Zhou Xiaojun, Liu Li. Fault Feature Extraction of Rolling Element Bearing Based on Morphological Undecimated Wavelet Decomposition[J]. Transactions of the Chinese Society for Agricultural Machinery,2010,41(2):203-207.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期:
  • 出版日期:
文章二維碼