ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于不規(guī)則成像機(jī)器視覺的棉花白色異纖檢測算法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:


Inspection of White Foreign Fibers in Cotton by Machine Vision with Irregular Imaging Function
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    基于不規(guī)則成像機(jī)器視覺系統(tǒng),,提出一種棉花白色異性纖維檢測的圖像分割算法:采用Gabor算子提取多個方向的特征向量,,融合成特征圖,,由此增大背景與目標(biāo)之間的對比度,;然后基于特征圖的統(tǒng)計規(guī)律進(jìn)行二值分割,,最后應(yīng)用形態(tài)特征分離目標(biāo)與背景,。實驗結(jié)果表明,,該算法抗噪能力強(qiáng),、能檢出白色異性纖維。

    Abstract:

    It is difficult to detect white foreign fibers in cotton by traditional machine vision systems and image segmentation methods, because the color of the targets and background is very close. To solve the problem, an image segmentation algorithm for a machine vision system with an irregular imaging function was presented. Using Gabor operator to extract the orientation feature vectors of an image, combined them into a feature map, thus the contrast between the background and targets was improved by the algorithm. Then a threshold was calculated according to the statistical characteristics of the feature maps. Finally, the white foreign fibers were separated from cotton in the binary image, and the image noises were eliminated by a morphological operation. The experimental results indicated that the algorithm is anti-noise and capable of detecting the targets.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

李國輝,蘇真?zhèn)?夏心怡.基于不規(guī)則成像機(jī)器視覺的棉花白色異纖檢測算法[J].農(nóng)業(yè)機(jī)械學(xué)報,2010,41(5):164-167. Inspection of White Foreign Fibers in Cotton by Machine Vision with Irregular Imaging Function[J]. Transactions of the Chinese Society for Agricultural Machinery,2010,41(5):164-167.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期:
  • 出版日期:
文章二維碼