ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于滑模觀測和模糊推理的車輛側(cè)翻實(shí)時(shí)預(yù)警技術(shù)
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:


-time Rollover Prediction for Vehicle Based on Principles of Sliding Mode and Fuzzy Inference System
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    提出一種實(shí)時(shí)的車輛側(cè)傾狀態(tài)觀測器和側(cè)翻預(yù)警算法,。建立一種考慮輪胎力非線性特性的擴(kuò)展3自由度車輛模型,,并使用非線性最小二乘法擬合輪胎模型的參數(shù),。在車輛模型的基礎(chǔ)上設(shè)計(jì)了基于超螺旋理論的滑模觀測器,,實(shí)時(shí)觀測車輛的側(cè)傾狀態(tài),。側(cè)翻預(yù)警算法依據(jù)當(dāng)前車輛狀態(tài)參數(shù)及變化趨勢,,通過構(gòu)造模糊推理系統(tǒng)計(jì)算車輛側(cè)翻指數(shù),,綜合評(píng)價(jià)車輛側(cè)翻的危險(xiǎn)程度,。使用車輛動(dòng)力學(xué)仿真軟件veDYNA進(jìn)行的虛擬道路試驗(yàn)驗(yàn)證了觀測器的觀測精度和預(yù)警算法的預(yù)警效果,。

    Abstract:

    This paper presented a real-time rollover prediction algorithm based on roll state estimator. An extended 3-DOF vehicle model considering tire nonlinear characteristics was firstly proposed, the parameters of the tire model were obtained by using nonlinear least square method. Vehicle roll state was estimated using sliding mode(SM) observer based on the super twisting algorithm. A rollover critical index(RCI), which indicated the risk of rollover, was developed by a fuzzy inference system(FIS) based on current vehicle state and its trend. The veDYNA dynamic simulation software was used to verify the performances of roll state estimator and roll motion prediction.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

王健,余貴珍,張為,丁能根.基于滑模觀測和模糊推理的車輛側(cè)翻實(shí)時(shí)預(yù)警技術(shù)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2010,41(6):1-6.-time Rollover Prediction for Vehicle Based on Principles of Sliding Mode and Fuzzy Inference System[J]. Transactions of the Chinese Society for Agricultural Machinery,2010,41(6):1-6.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期:
  • 出版日期:
文章二維碼