ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

深沖鋼激光拼焊板焊縫形狀與晶粒尺寸預(yù)測模型
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:


Weld Shapes Prediction and Grain Size Prediction of Deep-drawing Laser Tailor-welded Blank
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對St12、St16深沖鋼激光拼焊板的焊接溫度場分布對焊縫形狀影響較大的問題,,在分析試驗鋼板溫度相關(guān)性,、熔化潛熱,、對流及輻射對激光焊接溫度場影響規(guī)律的基礎(chǔ)上,,建立了焊縫形狀預(yù)測模型,。在模型節(jié)點選取時提出了首尾節(jié)點控制法,使焊接溫度場模擬時的節(jié)點選取具有更高精度,所得預(yù)測焊縫形狀與實際焊縫形狀吻合度高,。提出了一種基于偏最小二乘回歸(PLS)的焊縫及其熱影響區(qū)晶粒尺寸預(yù)測模型。焊縫及其熱影響區(qū)晶粒尺寸的預(yù)測精度均達(dá)95%,,充分表明該模型與工藝試驗結(jié)果吻合良好,驗證了該預(yù)測模型的合理性及適用性,。

    Abstract:

    The weld shapes of St12 and St16 deep-drawing steels were influenced by transient temperature distributions. Based on the influence of temperature dependence, latent heat of fusion, convection and radiation, the weld shapes prediction model was built. Additionally, the first and last nodes control method was used in heat loading in order to make sure all nodes could be selected. Experimental results showed that there were no significant differences between the predictive and actual weld shapes. Furthermore, multiple regression prediction models of grain size in weld and heat affected zone (HAZ) were put forward based on PLS. The prediction accuracy of grain size in weld and HAZ was above 95%. Therefore, the proposed models are reasonable and applicable to examine deep-drawing steel for demonstrative purposes. 

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

李新城,馮曉天,朱偉興,陳煒,李大東.深沖鋼激光拼焊板焊縫形狀與晶粒尺寸預(yù)測模型[J].農(nóng)業(yè)機(jī)械學(xué)報,2010,41(6):222-226.Weld Shapes Prediction and Grain Size Prediction of Deep-drawing Laser Tailor-welded Blank[J]. Transactions of the Chinese Society for Agricultural Machinery,2010,41(6):222-226.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期:
  • 出版日期:
文章二維碼