ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

遙感影像的自適應(yīng)小波精細(xì)積分降噪方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國家自然科學(xué)基金資助項(xiàng)目(60772038);中國農(nóng)業(yè)大學(xué)基本科研業(yè)務(wù)費(fèi)研究生科研創(chuàng)新專項(xiàng)資助項(xiàng)目(kycx09124)


Adaptive Wavelet Precise Integration Method on Remote Sensing Image Denoising
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對遙感影像數(shù)據(jù)量大、應(yīng)用精度較高的圖像降噪變分法處理時(shí)計(jì)算效率較低的問題,,基于quasi-Shannon小波構(gòu)造了一種二維自適應(yīng)小波插值算子,,并和精細(xì)積分法相結(jié)合建立了求解二維偏微分方程自適應(yīng)小波精細(xì)積分方法,。利用小波變換的多尺度自適應(yīng)性和精細(xì)積分方法的高精度有效提高了圖像降噪變分法的求解效率,從而可實(shí)現(xiàn)較大遙感影像的降噪處理。

    Abstract:

    The image denoising variational method possesses higher numerical precision but lower computational efficiency, especially in processing the remote sensing images which is usually larger. To this problem, an adaptive 2-D wavelet interpolation operator was constructed based on quasi-Shannon wavelet function, and then adaptive wavelet precision integration method (PIM) on solving 2-D partial differential equation was proposed by combining with PIM. This proposed method combined the multi-scale property of the wavelet transformation with the higher precision of PIM, which could improve the computational efficiency effectively so that the lager remote sensing image could be processed.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

許文寧,梅樹立,王鵬新,楊勇.遙感影像的自適應(yīng)小波精細(xì)積分降噪方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2011,42(4):148-152. Xu Wenning, Mei Shuli, Wang Pengxin, Yang Yong. Adaptive Wavelet Precise Integration Method on Remote Sensing Image Denoising[J]. Transactions of the Chinese Society for Agricultural Machinery,2011,42(4):148-152.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期:
  • 出版日期:
文章二維碼