ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于水平集和先驗(yàn)信息的農(nóng)業(yè)圖像分割方法
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金資助項(xiàng)目(60975007、61003151);中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)資金資助項(xiàng)目(QN2009091)


Segmentation of Agricultural Images Using Level Set and Prior Information
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    提出了一種基于先驗(yàn)信息的C—V模型并對(duì)雜草﹑小麥﹑蘋果進(jìn)行分割研究,。根據(jù)某類農(nóng)業(yè)圖像的特點(diǎn),,把圖像表示為易于分割的模型,,提取模型中感興趣目標(biāo)的信息量作為先驗(yàn)信息,通過(guò)H分量得到初始輪廓,,并以此初始化提出的模型,,迭代求解水平集函數(shù),得到收斂的目標(biāo)輪廓曲線,。對(duì)雜草﹑小麥﹑蘋果分割結(jié)果統(tǒng)計(jì)分割面積正確率為0.999,、0.999、0.846,,面積錯(cuò)誤率為0,、0、0.125,。

    Abstract:

    A C—V model based on level set and prior information was proposed and was applied to segment weed, wheat and apple images. Based on the characteristics of the image, the image was represented by a model which made the image easy to segment at first, and then the data contents of a region of interest in this model were extracted as the prior information. An initial contour by hue was obtained and the proposed model by this contour was initialized, the level set function was iteratively solved. Finally, a stationary-contour was obtained. The correct rates of weed, wheat and apple were 0.999, 0.999 and 0.846 respectively and the error rates were 0, 0 and 0.125 respectively.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

耿楠,于偉,寧紀(jì)鋒.基于水平集和先驗(yàn)信息的農(nóng)業(yè)圖像分割方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2011,42(9):167-172. Geng Nan, Yu Wei, Ning Jifeng. Segmentation of Agricultural Images Using Level Set and Prior Information[J]. Transactions of the Chinese Society for Agricultural Machinery,2011,42(9):167-172.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期:
  • 出版日期:
文章二維碼