ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于SVM和D—S證據(jù)理論的多特征融合雜草識別方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

鹽城工學院重點建設學科開放基金資助項目(XKY2010021);江蘇大學現(xiàn)代農業(yè)裝備與技術省部共建教育部重點實驗室開放基金資助項目(NZ200709)


Method of Multi-feature Fusion Based on SVM and D—S Evidence Theory in Weed Recognition
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對單一特征識別雜草的低準確率和低穩(wěn)定性,,提出一種支持向量機(SVM)和D—S證據(jù)理論相結合的多特征融合雜草識別方法,。在對田間植物圖像處理的基礎上,,提取植物葉片的顏色、形狀和紋理等3類視覺特征,,分別以3類單特征的SVM分類結果作為獨立證據(jù)構造基本概率指派(BPA),運用D—S證據(jù)組合規(guī)則進行決策級融合,根據(jù)分類判決門限給出最終的識別結果,。試驗結果表明,多特征決策融合識別方法正確識別率達到97%以上,。

    Abstract:

    According to the low accuracy and low stability of the single feature-based method for weed recognition, a multi-feature fusion method based on SVM and D—S evidence theory was proposed. Firstly, three types of visual features such as color, shape and texture were extracted from the plant leaves after a series of image processing. Then, the plants were classified according to each type of features utilizing SVM and the results were used as evidences to construct the basic probability assignment (BPA). Finally, using D—S combination rule of evidence to achieve the decision fusion and giving final recognition results by classification thresholds. The experimental results show that the accuracy of multi-feature fusion method is over 97% and it has good performance on accuracy and stability compared to the single feature-based method in weed recognition.

    參考文獻
    相似文獻
    引證文獻
引用本文

李先鋒,朱偉興,孔令東,花小朋.基于SVM和D—S證據(jù)理論的多特征融合雜草識別方法[J].農業(yè)機械學報,2011,42(11):164-168,163. Li Xianfeng, Zhu Weixing, Kong Lingdong, Hua Xiaopeng. Method of Multi-feature Fusion Based on SVM and D—S Evidence Theory in Weed Recognition[J]. Transactions of the Chinese Society for Agricultural Machinery,2011,42(11):164-168,163.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期:
  • 出版日期:
文章二維碼