ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于光譜成像技術(shù)的溫室黃瓜識別方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學(xué)基金資助項目(31071320,、31101079);農(nóng)業(yè)科技成果轉(zhuǎn)化基金資助項目(2011GB23600020);高等學(xué)校博士點專項科研基金資助項目(20090008110007);教育部博士點新教師類基金資助項目(200800191014)


Greenhouse Cucumber Recognition Based on Spectral Imaging Technology
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為實現(xiàn)溫室環(huán)境下近色系果蔬的采摘識別,,提出了一種基于統(tǒng)計方差結(jié)合人工神經(jīng)網(wǎng)絡(luò)的光譜選擇方法對黃瓜敏感波段進(jìn)行分析驗證,并將選定的光譜組合作為溫室黃瓜識別中光譜圖像獲取的參考依據(jù),。結(jié)果表明,利用所攝敏感波段的圖像信息可有效地解決黃瓜目標(biāo)與背景的區(qū)分問題,。綜合比較黃瓜作物(果實,、葉、花)在不同光譜域的分光反射特性差異,,利用方差分解方法獲取果實信息的敏感波段,,在敏感區(qū)域內(nèi)進(jìn)行主成分分析,將前4個主成分作為網(wǎng)絡(luò)輸入,、作物器官類別作為輸出,,建立3層BP—ANN驗證模型。將160個樣本數(shù)據(jù)按比例分為建模集和預(yù)測集,,模型對建模集120個樣本的正確判別率為100%,,對預(yù)測集40個樣本的正確判別率為95%,。說明敏感波段的選擇能較好地反映黃瓜作物不同器官間的特性差異,。

    Abstract:

    In order to realize the recognition and harvesting of the similar-color fruits, a spectrum selected method was developed to analyze and verify sensitive bands of cucumber based on statistical variance analysis and artificial neural network. Then the selected spectrum composition was used as reference basis for spectral image acquisition in greenhouse cucumber recognition, and the results of image processing indicated that the images within sensitive bands were captured to cope with the similar-color segmentation problem under complex environment effectively. By comparing the spectral reflectance difference of cucumber plant (fruit,leaf and flower) from visible to infrared region (350~1200nm), sensitive bands of fruit information were obtained by statistical variance analysis. After that, principal component analysis compressed the sensitive bands into several new variables that were the linear combination of original spectral data. In order to set up the three layer verifying model of back propagation artificial neural network (BP—ANN), the first four PCs (principle components) were applied as inputs of BP—ANN, and the values of type of cucumber organs were applied as outputs. In this model, the trained network arrives at a 100% identification rate for 120 training samples as well as a 95% identification rate for 40 test samples. It proved that the selected spectrum composition could better reflect the characteristic difference of cucumber organs.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

袁挺,紀(jì)超,陳英,李偉,張俊雄.基于光譜成像技術(shù)的溫室黃瓜識別方法[J].農(nóng)業(yè)機(jī)械學(xué)報,2011,42(Z1):172-176. Yuan Ting, Ji Chao, Chen Ying, Li Wei, Zhang Junxiong. Greenhouse Cucumber Recognition Based on Spectral Imaging Technology[J]. Transactions of the Chinese Society for Agricultural Machinery,2011,42(Z1):172-176.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期:
  • 出版日期:
文章二維碼