ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于DPLS和LS—SVM的梨品種近紅外光譜識(shí)別
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

江西省科技支撐項(xiàng)目(2010BNB01200)


Identification of Varieties of Pear Using Near Infrared Spectra Based on DPLS and LS—SVM Model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為了實(shí)現(xiàn)不同品種梨的快速光譜鑒別,,采用主成分分析法(PCA)對(duì)光譜數(shù)據(jù)進(jìn)行聚類分析,,得到3種不同品種梨的特征差異,,主成分分析表明,,以所有建模樣本主成分PC1和PC2做出的得分圖,,對(duì)不同種類梨具有很好的聚類作用,。利用主成分分析得到的載荷圖可以得到對(duì)于梨品種敏感的特征波段,,用特征波段圖譜作為輸入建立偏最小二乘判別(DPLS)模型和最小二乘支持向量機(jī)(LS—SVM)模型,。3個(gè)品種梨各70個(gè)共210個(gè)分別建立偏最小二乘判別(DPLS)模型和最小二乘支持向量機(jī)(LS—SVM)模型,。對(duì)未知的24個(gè)樣本進(jìn)行預(yù)測(cè),,LS—SVM模型品種識(shí)別準(zhǔn)確率達(dá)到100%,DPLS模型的校正及驗(yàn)證結(jié)果與實(shí)際分類變量的相關(guān)系數(shù)均大于0.980,,交叉驗(yàn)證均方根誤差(RMSECV)和預(yù)測(cè)均方根誤差(RMSEP)都小于0.100,,品種識(shí)別率為100%。表明提出的方法具有很好的分類和鑒別作用,,提供了梨的品種快速鑒別分析方法,。

    Abstract:

    In order to realize the rapid identification of different varieties of pears, principal component analysis (PCA) on the spectral data clustering analysis was used on three different varieties of pears to find the characteristic differences. The principal component analysis showed that the main composition PC1 and PC2 for all the modeling samples score diagrams had very good clustering effect to the different types of pears. Load diagram that got by using principal component analysis can obtain the variety sensitive characteristic wavelengths from pears, and with the characteristic band spectrum as input to build partial least-squares discriminant (DPLS) and least squares support vector machine (LS—SVM) models. Seventy pears of three varieties with 210 in total were used to build DPLS and LS—SVM models respectively. The unknown 24 samples were predicted by the models, the recognition accuracy rate of the LS—SVM model reached to 100%. The calibration and verification results of the DPLS model and the actual classification variables of the correlation coefficient was greater than 0.980. Cross validation root mean square error (RMSECV) and root mean square error of prediction (RMSEP) were less than 0.100. The varieties recognition rate was 100%. The proposed rapid identification method has good classification effects. 

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

劉雪梅,章海亮.基于DPLS和LS—SVM的梨品種近紅外光譜識(shí)別[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2012,43(9):160-164. Liu Xuemei, Zhang Hailiang. Identification of Varieties of Pear Using Near Infrared Spectra Based on DPLS and LS—SVM Model[J]. Transactions of the Chinese Society for Agricultural Machinery,2012,43(9):160-164.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2012-09-04
  • 出版日期:
文章二維碼