ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于PCA—SVM的棉花出苗期雜草類型識別
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

農(nóng)業(yè)部行業(yè)科技專項資助項目(201203025);中國農(nóng)業(yè)大學(xué)研究生科研創(chuàng)新專項資助項目(2012YJ262)


Recognition of Weed during Cotton Emergence Based on Principal Component Analysis and Support Vector Machine
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為了實現(xiàn)棉田中不同類型雜草的機器視覺識別,提出基于主成分分析和支持向量機的棉花出苗期雜草識別方法,。該方法通過提取棉田圖像中棉花和雜草的顏色,、形狀,、紋理等特征,,并利用主成分分析(PCA) 降低特征變量空間維數(shù),,結(jié)合支持向量機,,實現(xiàn)對棉田雜草類型分類,。通過120個棉花雜草測試樣本分類試驗結(jié)果發(fā)現(xiàn),,經(jīng)PCA降維得到的前3個主成分分量能有效減少支持向量機的訓(xùn)練時間和提高分類正確率,;通過對比發(fā)現(xiàn)前3個主成分分量與徑向基核函數(shù)支持向量機相結(jié)合效果最好,其訓(xùn)練時間為91ms,,平均分類正確率達(dá)98.33%,。

    Abstract:

    A method of recognition weeds during cotton emergence based on principal component analysis (PCA) and support vector machine (SVM) was developed. For the effective classification of the variety of weeds in cotton field, the dimension of feature variable space was reduced by extracting color, shape, texture characteristics and principal component analysis. The experiment of classification for 120 samples of cottons and weeds showed that it was able to reduce training time and increase classification accuracy effectively by the first three principal components obtained by PCA dimensionality reduction. It was found by comparison that the best classification and recognition result was obtained by using the combination of the first three principal components and RBF kernel function SVM. The training time is 91ms and the average correct classification rate is 98.33%.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

李慧,祁力鈞,張建華,冀榮華.基于PCA—SVM的棉花出苗期雜草類型識別[J].農(nóng)業(yè)機械學(xué)報,2012,43(9):184-189,196. Li Hui, Qi Lijun, Zhang Jianhua, Ji Ronghua. Recognition of Weed during Cotton Emergence Based on Principal Component Analysis and Support Vector Machine[J]. Transactions of the Chinese Society for Agricultural Machinery,2012,43(9):184-189,196.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2012-09-04
  • 出版日期:
文章二維碼