ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于SVM-DS多特征融合的雜草識別
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學基金資助項目(60975007,、31101075)


Weed Recognition Based on SVM-DS Multi-feature Fusion
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為解決單一特征識別雜草的低準確率和低穩(wěn)定性,提出一種支持向量機(SVM)和DS(Shafer-Dempster)證據(jù)理論相結合的多特征融合雜草識別方法,。在對田間植物圖像處理的基礎上,,提取植物葉片形狀,、紋理及分形維數(shù)3類特征,分別以3類單特征的SVM分類結果作為獨立證據(jù)構造基本概率指派(BPA),,引入基于矩陣分析的DS融合算法簡化決策級融合算法復雜度,,根據(jù)融合結果及分類判決門限給出最終的識別結果。實驗結果表明,,多特征決策融合識別方法正確識別率達到96.11%,,與單特征識別相比有更好的穩(wěn)定性和更高的識別率。

    Abstract:

    To address the low accuracy and low stability of a single feature for weed recognition, a multi-feature fusion method based on support vector machine (SVM) and DS (Shafer-Dempster) evidence theory was proposed. Firstly, three types of plant leaf features such as shape, texture and fractal dimension were extracted from the plant leaves after a series of image processing. Then the SVM classification results of each single feature were used as evidences to construct the basic probability assigned (BPA), and the method of DS fusion based on matrix analysis was used for decision fusion. Finally, recognition results were given based on fusion results and classification thresholds. The experimental results showed that the accuracy of multi-feature fusion method was 96,。11% which has good performance on accuracy and stability compared with the single feature method in weed recognition.

    參考文獻
    相似文獻
    引證文獻
引用本文

何東健,喬永亮,李攀,高瞻,李海洋,唐晶磊.基于SVM-DS多特征融合的雜草識別[J].農業(yè)機械學報,2013,44(2):182-187. He Dongjian, Qiao Yongliang, Li Pan, Gao Zhan, Li Haiyang, Tang Jinglei. Weed Recognition Based on SVM-DS Multi-feature Fusion[J]. Transactions of the Chinese Society for Agricultural Machinery,2013,44(2):182-187.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2013-02-04
  • 出版日期:
文章二維碼