ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于多特征自適應(yīng)融合的車輛跟蹤方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學(xué)基金資助項目(60964003)和高等學(xué)校博士學(xué)科點專項科研基金資助項目(20106201110003)


Vehicle Tracking Based on Multi-feature Adaptive Fusion
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    提出了一種新的自適應(yīng)多特征融合跟蹤算法,。該算法采用多項式近似與中心差分方法實現(xiàn)建議分布函數(shù)的優(yōu)化處理,,通過擴展卡爾曼濾波器在采樣粒子集中融入最新的量測信息,,較好地克服了粒子權(quán)重退化問題,;同時,,為克服乘性與加性融合算法的缺陷,,采用自適應(yīng)多特征融合方法,,將目標(biāo)汽車靜態(tài)和動態(tài)互補特征作為觀測信息,,在新算法的框架內(nèi)進(jìn)行自適應(yīng)融合跟蹤,。實驗結(jié)果表明,,該方法有效提升了不同環(huán)境下車輛跟蹤系統(tǒng)的精確性和魯棒性。

    Abstract:

    A kind of adaptive multi-feature fusion tracking algorithm was proposed. The proposed algorithm overcame the particle degeneration phenomenon well by using finite-difference extended Kalman filter. The proposal distribution function was optimized. The latest observation information was fused into the suggestion distribution function by using finite-difference extended Kalman filter. Meanwhile, an adaptive multi-feature fusion method was proposed to overcome the defects of the additive fusion and the multiplicative fusion. The proposed method used static and dynamic characteristics as complementary observables in the framework of improved particle filter. Experimental results showed that the proposed method was effective in enhancing the accuracy and robustness of vehicle tracking system in different environments. 

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

李昱辰,李戰(zhàn)明.基于多特征自適應(yīng)融合的車輛跟蹤方法[J].農(nóng)業(yè)機械學(xué)報,2013,44(4):33-38. Li Yuchen, Li Zhanming. Vehicle Tracking Based on Multi-feature Adaptive Fusion[J]. Transactions of the Chinese Society for Agricultural Machinery,2013,44(4):33-38.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2013-03-28
  • 出版日期:
文章二維碼