ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于壓縮感知理論的蘋果病害識(shí)別方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國家自然科學(xué)基金資助項(xiàng)目(61271280,、61001100)和陜西省自然科學(xué)基金資助項(xiàng)目(2010K06-15)


Apple Disease Recognition Based on Compressive Sensing
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為實(shí)現(xiàn)自然場(chǎng)景下低分辨率蘋果果實(shí)病害的智能識(shí)別,提出了一種基于壓縮感知理論的蘋果病害識(shí)別方法。以輪紋病、炭疽病和新輪紋病3種常見的蘋果果實(shí)病害為研究對(duì)象,提取病斑的8個(gè)紋理特征參數(shù)組成訓(xùn)練特征矩陣,。利用壓縮感知理論,求解待測(cè)樣本特征向量在特征矩陣上的稀疏表示系數(shù)向量,通過對(duì)系數(shù)向量的分析實(shí)現(xiàn)待測(cè)樣本的分類,。設(shè)計(jì)灰度關(guān)聯(lián)分析和支持向量機(jī)識(shí)別模型與本文方法進(jìn)行識(shí)別效果對(duì)比,平均正確識(shí)別率分別為86.67%,、90%和90%,。實(shí)驗(yàn)結(jié)果表明,基于壓縮感知理論的識(shí)別方法能夠?qū)μO果病害進(jìn)行有效識(shí)別,。

    Abstract:

    To intelligently recognize apple fruit diseases from low-resolution images taken in natural environment, a method based on compressive sensing was proposed. Three kinds of apple fruit diseases (apple ring rot, apple anthracnose and new apple ring rot) were investigated. Eight texture feature values were extracted to construct the training eigenmatrix. Then compressive sensing was used to approximate the sparse coefficient vector which was the sparse representation of the sample eigenvector on the training eigenmatrix. Thus the test sample was classified by analyzing the coefficients vector. Both the gray relation analysis and the support vector machine recognition models were constructed to compare with the proposed method. The recognition rates of three models were 86.67%, 90% and 90%, respectively. The experimental results showed that the recognition method based on compressive sensing could effectively recognize these three kinds of apple fruit diseases. 

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

霍迎秋,唐晶磊,尹秀珍,方勇.基于壓縮感知理論的蘋果病害識(shí)別方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2013,44(10):227-232. Huo Yingqiu, Tang Jinglei, Yin Xiuzhen, Fang Yong. Apple Disease Recognition Based on Compressive Sensing[J]. Transactions of the Chinese Society for Agricultural Machinery,2013,44(10):227-232.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2013-10-14
  • 出版日期:
文章二維碼