ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于各向異性核擴散法的楊樹葉特征降維
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家高技術研究發(fā)展計劃(863計劃)資助項目(2012AA102002-4),、國家自然科學基金資助項目(31300471)和江蘇高校優(yōu)勢學科建設工程資助項目


Dimensionality Reduction for Poplar Leaves Features Based on Anisotropic Kernel Diffusion Map
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    對缺水與正常楊樹苗葉片進行特征分析與降維處理,。首先對樣本進行光照補償并去除奇異性,;然后對樣本數(shù)據(jù)空間進行歸一化處理,,提出采用基于各向異性核擴散法對缺水與正常樣本數(shù)據(jù)空間進行降維,核參數(shù)采用最大類間距離法自適應調(diào)整,;最后根據(jù)最大信噪比原則選擇降維子空間維數(shù),,獲得識別特征。分別對各向異性核擴散法,、LE、LTSA以及PCA進行分析比較,,對于葉脈較粗的楊樹葉片,,采用各向異性核擴散法效果較好,,能保持空間的幾何關系。采用SVM分類法對不同算法提取的特征進行分類,,結果表明本文提出的算法提取的楊樹葉特征分類效果較好,。

    Abstract:

    Dimensionality reduction approach was proposed based on anisotropic kernel diffusion map to extract the features of poplar leaves, in which the kernel parameters were adjusted adaptively. In order to improve the accuracy and efficiency, singularity points were removed and features normalization method was employed to obtain the robust features. The maximum margin criterion method was utilized to obtain anisotropic kernel parameter by gradient descent method. The results show that the anisotropic kernel diffusion map has good performance on efficiency for poplar leaves compared with LE, LTSA and PCA. The comparisons of classification experiments have been conducted, by using SVM (support vector machine) classifier to recognize the water shortage of poplar leaves, and the results validate the accuracy and stability of the proposed method.

    參考文獻
    相似文獻
    引證文獻
引用本文

胡春華,李萍萍.基于各向異性核擴散法的楊樹葉特征降維[J].農(nóng)業(yè)機械學報,2013,44(11):281-286. Hu Chunhua, Li Pingping. Dimensionality Reduction for Poplar Leaves Features Based on Anisotropic Kernel Diffusion Map[J]. Transactions of the Chinese Society for Agricultural Machinery,2013,44(11):281-286.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2013-11-07
  • 出版日期:
文章二維碼