ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于核密度估計的散亂點云邊界特征提取
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學基金資助項目(51075247)和山東省自然科學基金資助項目(ZR2010EM008)


Boundary Feature Abstraction of Unorganized Points Based on Kernel Density Estimation
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為獲得逆向工程中復雜散亂點云的邊界特征,,提出了一種基于k鄰域點集核密度估計的邊界特征識別與提取算法,,通過R*樹索引結(jié)構(gòu)和動態(tài)擴展空心球算法實現(xiàn)樣點k鄰域點集的快速查詢,,將查詢區(qū)域半徑作為帶寬對點集進行核密度估計,,由核密度估計獲得反映點集分布的模式點,,依據(jù)模式點到樣點的距離與帶寬的比值判別邊界點特征,。實驗結(jié)果表明,,該算法能夠快速,、準確提取逆向工程中均勻及非均勻分布的散亂點云的邊界特征,。

    Abstract:

    In order to obtain the boundary feature of unorganized points, a method of boundary feature recognition and abstraction was proposed based on the kernel density estimation on k-neighborhood of every sample point. k-neighborhood of a sample point could be acquired quickly based on R*-tree index, and the radius of query area viewed as bandwidth was used to kernel density estimation on the point set consisted of the sample point and its k-neighborhood. In this way, the mode points reflected the distribution of point sets could be obtained. According to the ratio of distance between mode points and sample points to the bandwidh of kernel density estimation, the sample points located on boundary could be recognited and abstracted. The experimental results show that the algorithm can obtain the boundary feature of the unorganized points in uniform or nonuniform distribution exactly and rapidly. 

    參考文獻
    相似文獻
    引證文獻
引用本文

孫殿柱,劉華東,史陽,李延瑞.基于核密度估計的散亂點云邊界特征提取[J].農(nóng)業(yè)機械學報,2013,44(12):275-279,268. Sun Dianzhu, Liu Huadong, Shi Yang, Li Yanrui. Boundary Feature Abstraction of Unorganized Points Based on Kernel Density Estimation[J]. Transactions of the Chinese Society for Agricultural Machinery,2013,44(12):275-279,268.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2013-12-05
  • 出版日期:
文章二維碼