ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

番茄維生素C含量近紅外預(yù)測(cè)光譜的小波去噪
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金資助項(xiàng)目(31071830);山東省現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系建設(shè)專項(xiàng)資助項(xiàng)目(SDARS—2010—2—3—1)


Wavelet Denoising in Prediction Model of Tomato Vitamin C Content Using NIR Spectroscopy
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為剔除預(yù)測(cè)番茄維生素C含量的近紅外光譜數(shù)據(jù)中的噪聲信息,,利用Matlab 7.0小波工具箱對(duì)光譜數(shù)據(jù)進(jìn)行去噪處理,。為得到最佳去噪效果,,在dbN小波基中分別考察db2至db9小波去噪時(shí)模型的評(píng)價(jià)參數(shù),得到db6小波為最佳小波,;考察db6小波在分解層數(shù)從3到7變化時(shí)模型的評(píng)價(jià)參數(shù),,得到最佳分解層數(shù)5。以信噪比和均方根誤差對(duì)不同閾值方式下的去噪效果進(jìn)行評(píng)價(jià),,得到硬閾值的啟發(fā)式去噪方法去噪效果最佳,。將重構(gòu)后的光譜用偏最小二乘法建立預(yù)測(cè)模型,得到預(yù)測(cè)相關(guān)系數(shù)為0.907,,校正集的標(biāo)準(zhǔn)偏差和預(yù)測(cè)集樣本的標(biāo)準(zhǔn)偏差分別為0.819,、0.905,模型預(yù)測(cè)準(zhǔn)確率為88.3%,。去噪后的模型參數(shù)均好于原始信號(hào)所建模型參數(shù),,表明小波技術(shù)用于番茄維生素C預(yù)測(cè)的光譜去噪是可行的。

    Abstract:

    For removing the noise in the spectral data, Matlab 7.0 wavelet toolbox was used to denoise the data. In order to get the best denoising effect, the model evaluation parameters were investigated from the db2 to db9 wavelet respectively in dbN wavelet basis, and the db6 was thought to be the best wavelet according to the investigation result. Using the db6 wavelet, the optimal decomposition layer was five when changed from three to seven. For getting the best denoising method, the signal-to-noise ratio (SNR) and root mean square error (RMSE) were used to evaluate denoising effect in different thresholds, and the hard threshold value of the heuristic denoising method was observed to be the best one. The prediction model was built using the reconstruction spectrum by partial least squares (PLS) method. The correlation coefficient of the proposed model was 0.907. The root mean square error values of calibration and prediction were 0.819 and 0.905. The performance index was 88.3%. The model parameters using wavelet denoising were better than the original signal. It was showed that wavelet denoising was feasible in prediction of tomato vitamin C with NIR spectroscopy.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

李天華,施國(guó)英,魏珉,汪健民,侯加林.番茄維生素C含量近紅外預(yù)測(cè)光譜的小波去噪[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2013,44(Supp1):200-204. Li Tianhua, Shi Guoying, Wei Min, Wang Jianmin, Hou Jialin. Wavelet Denoising in Prediction Model of Tomato Vitamin C Content Using NIR Spectroscopy[J]. Transactions of the Chinese Society for Agricultural Machinery,2013,44(Supp1):200-204.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2013-10-22
  • 出版日期:
文章二維碼