ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于高光譜成像技術(shù)的腐爛,、病害梨棗檢測
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學(xué)基金資助項目(31271973);高等學(xué)校博士學(xué)科點專項科研基金資助項目(20101403110003);山西省自然科學(xué)基金資助項目(2012011030—3)


Detection of Decay and Disease Pear Jujube Based on Hyperspectral Imaging Technology
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    研究利用高光譜成像技術(shù)對腐爛,、病害及正常梨棗進(jìn)行分類,。首先分析比對了多種預(yù)處理方法,,確定使用一階微分處理可得到最佳的建模效果。利用線性的逐步判別分析法和非線性的偏最小二乘支持向量機(jī)(LS—SVM)建立分類模型時,,比較了全波段模型,、近似系數(shù)模型和主成分模型的參數(shù)和預(yù)測效果。結(jié)果表明,,使用光譜近似系數(shù)為特征參數(shù)并使用逐步判別分析法建立的模型得到了最佳的分類效果,,其分類準(zhǔn)確率達(dá)到了99.12%。

    Abstract:

    The classified feasibility of pear jujube with normal, rot and disease defect fruit by using hyperspectral imaging technology was analyzed. A best mathematical model was established by treating first derivative as the best pre-processing which was compared with other different kinds of proceeding methods. The stepwise discriminant analysis and least square support vector machines (LS—SVM) were applied to build the full-wave band, approximation coefficients and principal components models, respectively. The results indicated that the stepwise discriminant analysis model was more suitable for classifying the three different kinds of pear jujube samples. The average correct recognition rate was 99.12%.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

王斌,薛建新,張淑娟.基于高光譜成像技術(shù)的腐爛,、病害梨棗檢測[J].農(nóng)業(yè)機(jī)械學(xué)報,2013,44(Supp1):205-209. Wang Bin, Xue Jianxin, Zhang Shujuan. Detection of Decay and Disease Pear Jujube Based on Hyperspectral Imaging Technology[J]. Transactions of the Chinese Society for Agricultural Machinery,2013,44(Supp1):205-209.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2013-10-22
  • 出版日期:
文章二維碼