ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

葡萄套袋智能機器人系統(tǒng)設計與目標提取
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

“十二五”國家科技支撐計劃資助項目(2011BAD20B07);國家高技術研究發(fā)展計劃(“863”計劃)資助項目(SS2012AA041507);中國農業(yè)大學基本科研業(yè)務費研究生科研創(chuàng)新專項資助項目(2012YJ106)


Design and Target Extraction of Intelligent Grape Bagging Robot
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為提高葡萄套袋自動化智能化水平、降低人工套袋勞動強度,,研制了葡萄套袋機器人系統(tǒng),。針對棚架葡萄種植的園藝特點,,設計了基于圓柱坐標的機器人系統(tǒng)本體結構,,針對葡萄套袋機器人提取目標圖像運算量大,、耗時多等問題,,提出了一種基于遺傳算法的目標特征提取算法,,該方法無需彩色模型轉換,時間復雜性較形態(tài)學算法及BP神經網絡分割算法速度快,,可對葡萄進行快速目標特征提取及識別,。葡萄套袋機器人試驗證明:在導航車速度為0.3m/s情況下,葡萄目標識別率達95%,,葡萄目標識別平均耗時136ms,;機器人套袋成功率達85%,單串葡萄套袋平均耗時39.6s,。

    Abstract:

    In order to improve the intelligent level of grape bagging and reduce the amount of human labor, a robot system for grape bagging was developed. The hardware structure of robot system was designed based on cylindrical coordinate. A method was proposed in order to get target feature extraction and recognition method by genetic algorithm. Compared with the proposed algorithm, the segmentation method using morphology algorithm and BP neural network under the HSI color space needed more time. The result of experiments showed that when the velocity of platform was 0.3m/s, the recognition rate for grape was up to 95% and the average time-consuming was about 136ms. The grape bagging robot success rate was 85% and the average time-consuming for a cluster of grapes was 39.6s.

    參考文獻
    相似文獻
    引證文獻
引用本文

張凱,趙麗寧,孫哲,耿長興,李偉.葡萄套袋智能機器人系統(tǒng)設計與目標提取[J].農業(yè)機械學報,2013,44(Supp1):240-246. Zhang Kai, Zhao Lining, Sun Zhe, Geng Changxing, Li Wei. Design and Target Extraction of Intelligent Grape Bagging Robot[J]. Transactions of the Chinese Society for Agricultural Machinery,2013,44(Supp1):240-246.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2013-10-22
  • 出版日期:
文章二維碼