ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于為害狀色相多重分形的椪柑病蟲害圖像識(shí)別
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

湖南省科技計(jì)劃資助項(xiàng)目(2011NK3005,、2012NK4127)


Damage Pattern Recognition of Citrus reticulate Blanco Based on Multi-fractal Analysis of Image Hue
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為自動(dòng)識(shí)別椪柑病蟲害,研究了以椪柑病蟲害為害狀多重分形譜特性參數(shù)為輸入變量的小波神經(jīng)網(wǎng)絡(luò)病蟲害識(shí)別方法,。利用改進(jìn)型分水嶺算法提取椪柑病蟲害為害狀邊界,,對(duì)非連續(xù)的邊界進(jìn)行邊界跟蹤,,將過分割區(qū)域進(jìn)行區(qū)域合并,,標(biāo)記為害狀邊界,,提取標(biāo)記區(qū)域,,生成病蟲害為害狀目標(biāo)圖像,;對(duì)病蟲害為害狀目標(biāo)圖像0°~120°這一主要色相區(qū)域4等分,,產(chǎn)生4幅色相二值圖像;對(duì)二值圖像進(jìn)行多重分形分析,,計(jì)算其標(biāo)度不變區(qū)多重分形譜的高度及寬度,;以此高度及寬度作為小波神經(jīng)網(wǎng)絡(luò)的輸入,進(jìn)行椪柑病蟲害識(shí)別,,5種病蟲害的平均識(shí)別正確率為87%,。試驗(yàn)結(jié)果表明:椪柑病蟲害為害狀的4對(duì)多重分形譜高度及寬度值較充分地反映了椪柑病蟲害色相累計(jì)信息、分布信息及區(qū)間形狀的典型特征,,能用此方法進(jìn)行椪柑病蟲害機(jī)器識(shí)別,。

    Abstract:

    The investigation proposed a new algorithm to automatize the identification process of pests and insects disease of Citrus reticulata Blanco var. Ponkan, in which multi-fractal spectra of image hue were set as inputs of wavelet neural network model. In the new algorithm, image boundary of damage pattern of Ponkan was extracted with improved watershed algorithm, and discontinuous boundary was processed with boundary following, meanwhile over-segmentation region was merged and boundary was marked, at last, damage pattern image was generated. After the work above, firstly, hue range 0°~120° of damage pattern image was equally segmented into 4 regions to generate 4 binary images. And then these binary images were analyzed by multi-fractal method to calculate the widths and heights of multi-fractal spectra of scale invariance region. In the end, the widths and heights of multi-fractal spectra were set as the inputs of wavelet neural network model to identify the pest and insects disease of citrus fruit. Test results showed that the accurate rate of identification of 5 pests and insects disease is about 87%, which means that widths and heights of multi-fractal spectra are sufficient to characterize the damage pattern of citrus fruit, and this method is applicable in machine automatic recognition for pests and insects disease of citrus fruit.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

溫芝元,曹樂平.基于為害狀色相多重分形的椪柑病蟲害圖像識(shí)別[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2014,45(3):262-267. Wen Zhiyuan, Cao Leping. Damage Pattern Recognition of Citrus reticulate Blanco Based on Multi-fractal Analysis of Image Hue[J]. Transactions of the Chinese Society for Agricultural Machinery,2014,45(3):262-267.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2013-03-15
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2014-03-10
  • 出版日期: 2014-02-10
文章二維碼