ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于高光譜圖像及ELM的生菜葉片氮素水平定性分析
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國家自然科學(xué)基金資助項(xiàng)目(31101082,、61075036),、江蘇高校優(yōu)勢學(xué)科建設(shè)工程資助項(xiàng)目PAPD(蘇政辦發(fā)2011 6號(hào))和農(nóng)業(yè)部農(nóng)業(yè)信息技術(shù)重點(diǎn)實(shí)驗(yàn)室開放課題資助項(xiàng)目


Discrimination of Lettuce Leaves’ Nitrogen Status Based on Hyperspectral Imaging Technology and ELM
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    基于高光譜圖像技術(shù)與極限學(xué)習(xí)機(jī) (Extreme learning machine,ELM)模式識(shí)別方法構(gòu)建一套生菜葉片氮素水平鑒別模型,。利用3種不同氮濃度的營養(yǎng)液無土栽培各氮素水平生菜,,在蓮座期采集每類氮素水平生菜葉片各84片,,利用高光譜圖像采集系統(tǒng)采集生菜葉片高光譜圖像,,并在每個(gè)高光譜圖像上選取葉片4個(gè)不同位置的60×60像素的感興趣區(qū)域(ROI),,求取感興趣區(qū)域光譜數(shù)據(jù)平均值作為葉片樣本的原始光譜,,利用標(biāo)準(zhǔn)正態(tài)變量校正對原始光譜進(jìn)行預(yù)處理,采用主成分分析法對光譜進(jìn)行降維,。采用ELM對訓(xùn)練樣本進(jìn)行建模,,并與傳統(tǒng)的BP及SVM算法模型進(jìn)行對比。從實(shí)驗(yàn)結(jié)果可以看出,,ELM模型訓(xùn)練時(shí)間和分類正確率分別為0.623 04s和100%,,在訓(xùn)練時(shí)間相當(dāng)?shù)那闆r下,ELM分類正確率高于SVM模型,,在分類正確率相當(dāng)?shù)那闆r下,,ELM模型的訓(xùn)練時(shí)間比BP模型要短。研究結(jié)果表明,,基于高光譜圖像技術(shù)及ELM可以構(gòu)建生菜葉片氮素水平分類模型,。

    Abstract:

    Discrimination of crop’s nitrogen level can contribute to reasonable and effective fertilization. Lettuces of various nitrogen levels were planted in three soilless nutrient solutions of different nitrogen concentrations. In the rosette stage, 84 lettuce leaves of each nitrogen level were collected and scanned by the hyperspectral imaging acquisition system. In every hyperspectral image of lettuce leaf, four different positions of 60×60pixel were selected as regions of interest (ROI). The average spectral data of the ROI were used as the original spectra of the leaf samples. The original spectra were preprocessed by the standard normal variate correction (SNV), and their dimensionalities were reduced through principal component analysis (PCA). ELM algorithm was used to establish model for the training samples, and then was compared with BP algorithm model and SVM algorithm model. The results show that the running time of ELM model is 0.62304s and its classification accuracy rate is 100%. During the same running time, the classification accuracy rate of ELM model is higher than that of SVM model. At the same classification accuracy rate, the running time of ELM model is shorter than that of BP model.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

孫 俊,衛(wèi)愛國,毛罕平,武小紅,張曉東,高洪燕.基于高光譜圖像及ELM的生菜葉片氮素水平定性分析[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2014,45(7):272-277. Sun Jun, Wei Aiguo, Mao Hanping, Wu Xiaohong, Zhang Xiaodong, Gao Hongyan. Discrimination of Lettuce Leaves’ Nitrogen Status Based on Hyperspectral Imaging Technology and ELM[J]. Transactions of the Chinese Society for Agricultural Machinery,2014,45(7):272-277.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2013-09-18
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2014-07-10
  • 出版日期: 2014-07-10
文章二維碼