ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于隨機(jī)森林回歸算法的小麥葉片SPAD值遙感估算
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國家自然科學(xué)基金資助項(xiàng)目(41271415)、江蘇省高校自然科學(xué)基金資助項(xiàng)目(12KJB520018),、省屬高校國際科技合作聘專重點(diǎn)資助項(xiàng)目,、“六大人才高峰”高層次人才資助項(xiàng)目(2011-NY039),、江蘇省高校優(yōu)秀科技創(chuàng)新團(tuán)隊(duì)資助項(xiàng)目和揚(yáng)州大學(xué)科技創(chuàng)新培育基金資助項(xiàng)目(2013CXJ028)


Estimation of Wheat Leaf SPAD Value Using RF Algorithmic Model and Remote Sensing Data
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    使用機(jī)器學(xué)習(xí)中的隨機(jī)森林(RF)回歸算法構(gòu)建小麥葉片SPAD值遙感反演模型,。以2010—2013年江蘇地區(qū)試驗(yàn)點(diǎn)稻茬小麥3個(gè)生育期(拔節(jié),、孕穗,、開花)的葉片為材料,,結(jié)合我國自主研發(fā)的環(huán)境減災(zāi)衛(wèi)星HJ-1對(duì)研究區(qū)域進(jìn)行同步監(jiān)測,,分析了各生育期葉片SPAD值與8種植被指數(shù)間的相關(guān)性,;以0.01水平下顯著相關(guān)的植被指數(shù)作為輸入?yún)?shù),使用RF回歸算法構(gòu)建了每個(gè)生育期的小麥SPAD反演算法模型,,即RF-SPAD模型,,以支持向量回歸(SVR)和反向傳播(BP)神經(jīng)網(wǎng)絡(luò)算法構(gòu)建的SVR-SPAD模型和BP-SPAD模型作為比較模型,以R2和均方根誤差(RMSE)為指標(biāo),,分析了每個(gè)生育期3個(gè)模型的學(xué)習(xí)能力和回歸預(yù)測能力,,結(jié)果表明:RF-SPAD模型在3個(gè)生育期都表現(xiàn)出最強(qiáng)的學(xué)習(xí)能力,R2和RMSE在拔節(jié)期分別為0.89和1.54,,孕穗期分別為0.85和1.49,,開花期分別為0.80和1.71,;RF-SPAD模型在3個(gè)生育期的回歸預(yù)測能力都高于BP-SPAD模型,高于或接近于SVR-SPAD模型,,R2和RMSE在拔節(jié)期分別為0.55和2.11,,孕穗期分別為0.72和2.20,開花期分別為0.60和3.16,。

    Abstract:

    As one of the machine learning algorithms, random forest (RF) regression was proposed firstly to construct remote sensing monitoring model to inverse leaf SPAD value in different growth stages of wheat. The experiment was carried out during 2010—2013 in Jiangsu province. Based on the wheat leaves and synchronous China’s domestic HJ-CCD multi-spectral data in the jointing stage, the booting stage and the anthesis stage respectively, the relationships between SPAD and eight vegetation indices were analyzed at corresponding period. According to the selected vegetation indices which were significantly related to the leaf SPAD value in the 0.01 level, the model for estimating leaf SPAD value at each period was built by using RF algorithm, namely the RF-SPAD model. At the corresponding period, SVR-SPAD model which was based on the support vector regression (SVR) and BP-SPAD model which was based on the back propagation (BP) neural network were constructed as compared models. SVR and BP neural network were both machine learning algorithms. Based on R2 and RMSE, the learning abilities and generalization abilities of three models at each period were analyzed. The results showed that the RF-SPAD model at three stages presented the strongest learning ability, which its R2 was the highest as well as RMSE was the lowest, concretely, R2 and RMSE were 0.89 and 1.54 in jointing stage, 0.85 and 1.49 in booting stage and 0.80 and 1.71 in anthesis stage respectively. RF-SPAD model’s prediction ability was equal to or higher than the reference models which R2 and RMSE were 0.55 and 2.11 in jointing stage, 0.72 and 2.20 in booting stage, 0.60 and 3.16 in anthesis stage respectively.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

王麗愛,馬 昌,周旭東,訾 妍,朱新開,郭文善.基于隨機(jī)森林回歸算法的小麥葉片SPAD值遙感估算[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2015,46(1):259-265. Wang Liai, Ma Chang, Zhou Xudong, Zi Yan, Zhu Xinkai, Guo Wenshan. Estimation of Wheat Leaf SPAD Value Using RF Algorithmic Model and Remote Sensing Data[J]. Transactions of the Chinese Society for Agricultural Machinery,2015,46(1):259-265.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2014-05-04
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2015-01-10
  • 出版日期: 2015-01-10
文章二維碼