ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

多鄰域鏈?zhǔn)浇Y(jié)構(gòu)的多目標(biāo)粒子群優(yōu)化算法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學(xué)基金資助項目(51301070)


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為了提高多目標(biāo)粒子群算法求解多目標(biāo)問題的性能,改善算法的收斂性,,提出一種多鄰域鏈?zhǔn)浇Y(jié)構(gòu)的多目標(biāo)粒子群優(yōu)化算法,。首先,,以一種環(huán)形鏈?zhǔn)酵負(fù)浣Y(jié)構(gòu),,將種群劃分為多個鄰域,,每個鄰域之間相互交叉重疊,,并針對不同位置的粒子,,進(jìn)行不同的速度和位置更新策略,。其次,,對所有粒子采用速度鉗制策略,并引入差分進(jìn)化策略對粒子進(jìn)行擾動,,從而進(jìn)一步提高算法的多樣性,。通過14個無約束和3個有約束函數(shù)仿真實驗,表明該算法相對于NSGA II,、SPEA2,、MOEA/D DE、SMPSO和OMOPSO算法,,獲得Pareto解集分布更加均勻,,算法的收斂性和多樣性也更好。為了進(jìn)一步驗證算法的可行性和有效性,,將其應(yīng)用于72桿桁架結(jié)構(gòu)尺寸設(shè)計,,并與其他優(yōu)化方法進(jìn)行了比較,結(jié)果表明該算法獲得的Pareto前端更均勻,,收斂性更好,。

    Abstract:

    In order to enhance the performance and convergence of multi-objective particle swarm optimization (MOPSO) algorithm for multi-objective optimization, a multi-neighborhood cycle chain structure of multi-objective particle swarm optimization (MNCS-MOPSO) was proposed. Firstly, the population was divided into many neighborhoods. The mutual overlaps were existed between the adjacent neighborhood, and updating strategy was used for different velocity and position aimed at particles of different positions. In addition, velocity control strategy was adopted for all particles and differential evolution strategy was introduced to make disturbance. Comparing with NSGA-II, SPEA2, MOEA/D-DE, SMPSO and OMOPSO by testing 14 unconstraint and 3 constrain benchmark functions, simulation experiments showed that the proposed algorithm could obtain a more uniform distribution of Pareto solution set, and better convergence as well as diversity than those state-of-the-art multi-objective metaheuristics. In order to verify the performance of MNCS-MOPSO algorithm, classical 72 bar truss sizing optimization problems were used to demonstrate the feasibility and effectiveness of this algorithm, and the results were compared with other optimization methods. The results indicate that the MNCS-MOPSO provides better performance in the diversity, the uniformity and the convergence of the obtained solution than other methods.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

王亞輝,唐明奇.多鄰域鏈?zhǔn)浇Y(jié)構(gòu)的多目標(biāo)粒子群優(yōu)化算法[J].農(nóng)業(yè)機械學(xué)報,2015,46(1):365-372. Wang Yahui, Tang Mingqi.[J]. Transactions of the Chinese Society for Agricultural Machinery,2015,46(1):365-372.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2014-10-15
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2015-01-10
  • 出版日期: 2015-01-10
文章二維碼