ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

番茄葉片早疫病近紅外高光譜成像檢測(cè)技術(shù)
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家高技術(shù)研究發(fā)展計(jì)劃(863計(jì)劃)資助項(xiàng)目(2013AA102301),、高等學(xué)校博士學(xué)科點(diǎn)專項(xiàng)科研基金資助項(xiàng)目(20130101110104),、教育部留學(xué)回國(guó)人員科研啟動(dòng)基金資助項(xiàng)目和中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)資金資助項(xiàng)目(2014FZA6005)


Detection of Early Blight on Tomato Leaves Using Near-infrared Hyperspectral Imaging Technique
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    提出了基于格拉姆斯密特(MGS)模型和貝葉斯羅蒂斯克回歸(BlogReg)的近紅外高光譜成像技術(shù)檢測(cè)番茄葉片早疫病的方法,。利用高光譜圖像采集系統(tǒng)獲取波長(zhǎng)874~1734nm范圍內(nèi)70個(gè)染病和80個(gè)健康番茄葉片的高光譜圖像,,選取染病和健康葉片30像素×30像素感興趣區(qū)域的光譜反射率,。建立了番茄葉片早疫病的最小二乘-支持向量機(jī)(LS-SVM)識(shí)別模型,,再通過MGS和BlogReg提取特征波長(zhǎng)(EW),,分別得到5個(gè)(911,、1409、1511,、1609,、1656nm)和9個(gè)(901、905,、908,、915、918,、1123,、1305、1460,、1680nm)特征波長(zhǎng),,并建立EW-LS-SVM和EW-LDA模型。在所有模型中,,建模集的正確識(shí)別率為93%~98%,,預(yù)測(cè)集的正確識(shí)別率為96%~100%。結(jié)果表明,,近紅外高光譜成像技術(shù)檢測(cè)番茄葉片早疫病是可行的,,MGS和BlogReg都是有效的特征波長(zhǎng)提取方法。

    Abstract:

    Early detection of early blight on tomato leaves using NIR hyperspectral imaging technique based on modified gram schmidt (MGS) model and Bayesian logistic regression (BlogReg) were studied. Hyperspectral images of 70 infected and 80 healthy tomato leaves were acquired by hyperspectral imaging system in the spectral wavelength of 874~1734nm. Spectral reflectance of 30×30 pixels from region of interest (ROI) of hyperspectral image was extracted. Least squares-support vector machine (LS-SVM) model based on the full wavelength was established to detect early blight. Five (911nm, 1409nm, 1511nm, 1609nm, 1656nm) and nine wavelengths (901nm, 905nm, 908nm, 915nm, 918nm, 1123nm, 1305nm, 1460nm, 1680nm) were selected by MGS and BlogReg, respectively. Then, LS-SVM and linear discriminant analysis (LDA) models were built based on these effective wavelengths. Among these models, the correct classification rates were 93%~98% in calibration set and 96%~100% in prediction set, respectively. The result indicated that it was feasible to detect early blight on tomato leaves by using NIR hyperspectral imaging technique.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

謝傳奇,方孝榮,邵詠妮,何 勇.番茄葉片早疫病近紅外高光譜成像檢測(cè)技術(shù)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2015,46(3):315-319. Xie Chuanqi, Fang Xiaorong, Shao Yongni, He Yong. Detection of Early Blight on Tomato Leaves Using Near-infrared Hyperspectral Imaging Technique[J]. Transactions of the Chinese Society for Agricultural Machinery,2015,46(3):315-319.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2014-04-04
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2015-03-10
  • 出版日期: 2015-03-10
文章二維碼