ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

黃綿土風干過程中土壤含水率的光譜預測
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家高技術(shù)研究發(fā)展計劃(863計劃)資助項目(2013AA102401—2)


Prediction of Soil Moisture Content in Air-drying Loess Using Spectral Data
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    以2014年兩次在陜西省乾縣田間采集的129個黃綿土土壤樣本為研究對象,,建立土壤含水率定量反演模型,。在土壤風干過程中測量光譜反射率及含水率,分析土壤含水率與光譜反射率之間的關(guān)系,,并利用一元線性及指數(shù)回歸建立土壤含水率光譜預測模型,。結(jié)果表明在400~1340,、1460~1790、1960~2390nm波長范圍內(nèi),,與含水率相關(guān)性最大的反射率對應的波長分別為570,、1460、1960nm,;吸收深度最大的波長位于490,、1460、1960nm,。土壤光譜特征指標與含水率之間的線性相關(guān)關(guān)系優(yōu)于指數(shù)相關(guān)關(guān)系,。以特征波長1980nm(C1980)、1980nm的吸收深度(D1980)和1480nm的吸收深度(D1480)為自變量建立的線性模型為土壤含水率預測的最優(yōu)模型,,校正和驗證的決定系數(shù)R2大于0.92,,相對預測偏差(RPD)大于2.5,均方根誤差(RMSE)小于2.5%,。研究表明利用自然土樣,,在風干過程中進行土壤含水率光譜快速預測是完全可行的,從而為遙感實時,、快速監(jiān)測土壤水分含量及大面積土壤水分反演提供了參考,。

    Abstract:

    129 loess soil samples taken from the field in Qian County of Shaanxi Province in 2014 were chosen as objects to build the inversion model between soil moisture content and spectra. The spectra and gravimetric moisture content of soil samples were measured during the process of soil air drying, and the relationship between spectra and soil moisture content was analyzed. The spectral predictive models of soil moisture content were established by using the linear regression and exponential analysis. Results showed that the biggest correlation coefficients and absorption depth bands located in 570, 1460, 1960nm and 490, 1460, 1960nm in the region of 400~1340, 1460~1790, 1960~2390nm, respectively. The linear relationship between spectral characteristic indexes and moisture content was better than the index relationship. The linear models were optimum models for predicting moisture content of loess by using characteristic band (C1980) and absorption depth (D1980 and D1480) as independent variables. The calibration and validation coefficient of determination R2 and residual prediction deviation (RPD) were higher than 0.92 and 2.5, respectively, and the root mean square error (RMSE) was less than 2.5%. These results showed that the moisture content of natural soil samples can be predicted rapidly by using spectral reflectance during the soil drying process. The study can provide a reference for real-time and rapid soil moisture content monitoring and soil moisture quantitative inversion in large area by using remote sensing technology.

    參考文獻
    相似文獻
    引證文獻
引用本文

劉秀英,王力,宋榮杰,劉淼,常慶瑞.黃綿土風干過程中土壤含水率的光譜預測[J].農(nóng)業(yè)機械學報,2015,46(4):266-272. Liu Xiuying, Wang Li, Song Rongjie, Liu Miao, Chang Qingrui. Prediction of Soil Moisture Content in Air-drying Loess Using Spectral Data[J]. Transactions of the Chinese Society for Agricultural Machinery,2015,46(4):266-272.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2015-01-05
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2015-04-10
  • 出版日期: 2015-04-10
文章二維碼