ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于時序EVI決策樹分類與高分紋理的制種玉米識別
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學基金資助項目(41171337)


Seed Maize Identification Based on Time-series EVI Decision Tree Classification and High Resolution Remote Sensing Texture Analysis
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對遙感技術(shù)區(qū)分制種玉米與大田玉米的技術(shù)難題,以不同源,、不同時相遙感數(shù)據(jù),,構(gòu)建了多時相OLI/Landsat-8結(jié)合GeoEye-1高分紋理制種玉米識別方法。首先以多時相OLI/Landsat-8構(gòu)建各地類EVI時序曲線,,利用地類的物候差異,,以C5.0決策樹算法識別玉米,然后針對制種玉米與大田玉米田塊的紋理差異,,利用GeoEye-1高分影像紋理信息進一步以閾值法識別制種玉米,。最后,以甘肅省張掖市臨澤縣為研究區(qū),,對提出的方法進行了試驗驗證,,結(jié)果顯示,,多時相OLI/Landsat-8總體分類精度為86.31%,Kappa系數(shù)為0.81,。玉米識別的用戶精度為88.39%,,制圖精度為95.35%,可滿足進一步對制種玉米的識別,。依據(jù)GeoEye-1高分遙感影像的紋理差異,,識別制種玉米,用戶精度為86.37%,,制圖精度為83.02%,,高于只利用單一OLI/Landsat-8數(shù)據(jù)源的分類精度。

    Abstract:

    To address the issue of distinguishing seed maize from grain maize with remote sensing, a method of multi-temporal OLI/Landsat-8 remote sensing images combined with GeoEye-1 high-resolution texture was proposed. Utilizing the phenological phase differences of all classes from multi-temporal OLI/Landsat-8 images, the C5.0 decision tree classification algorithm was applied to the constructed EVI time-series. According to the texture difference between seed maize and grain maize, thresholds were set to identify seed maize by using GeoEye-1 high-resolution texture information. Finally, Linze County of Zhangye City in Gansu Province was taken as a study area to test the method. The results showed that the overall classification accuracy of multi-temporal OLI/Landsat-8 was 86.31% and the Kappa coefficient was 0.81, the user accuracy of maize identification was 88.39% and the mapping accuracy was 95.35%, which can meet the demand of further identification of seed maize. In contrast, when combined with texture information from high-resolution images, the user accuracy of seed maize was 86.37% and the mapping accuracy was 83.02%, which were higher than those of exclusive OLI/Landsat-8 data source. The conclusion is, this method can play a technical role in monitoring seed field over large range fast and accurately with remote sensing technology, enforcing seed market supervision and improving the authorities’ response time to the market.

    參考文獻
    相似文獻
    引證文獻
引用本文

劉哲,李智曉,張延寬,張超,黃健熙,朱德海.基于時序EVI決策樹分類與高分紋理的制種玉米識別[J].農(nóng)業(yè)機械學報,2015,46(10):321-327. Liu Zhe, Li Zhixiao, Zhang Yankuan, Zhang Chao, Huang Jianxi, Zhu Dehai. Seed Maize Identification Based on Time-series EVI Decision Tree Classification and High Resolution Remote Sensing Texture Analysis[J]. Transactions of the Chinese Society for Agricultural Machinery,2015,46(10):321-327.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2015-06-30
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2015-10-10
  • 出版日期: 2015-10-10
文章二維碼