ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于遷移學(xué)習(xí)的無人機(jī)影像耕地信息提取方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國家自然科學(xué)基金青年科學(xué)基金資助項(xiàng)目(51209153,、41301021),、數(shù)字制圖與國土信息應(yīng)用工程國家測(cè)繪地理信息局重點(diǎn)實(shí)驗(yàn)室開放基金資助項(xiàng)目(DM2014SC02)和國土資源部地學(xué)空間信息技術(shù)重點(diǎn)實(shí)驗(yàn)室開放基金資助項(xiàng)目(KLGSIT2015-04)


Cultivated Land Information Extraction from High Resolution UAV Images Based on Transfer Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    隨著精準(zhǔn)農(nóng)業(yè)技術(shù)的發(fā)展,,對(duì)農(nóng)作物用地信息快速,、準(zhǔn)確提取的需求越來越高。同時(shí),,無人機(jī)技術(shù)以其方便,、高效、具有低空云下飛行能力等優(yōu)勢(shì)被廣泛應(yīng)用于自然資源的調(diào)查中,。但無人機(jī)影像普遍光譜信息較為匱乏,,因此很難準(zhǔn)確、快速地提取出耕地信息,?;诖耍岢隽艘环N利用遷移學(xué)習(xí)機(jī)制的耕地提取方法(TLCLE),。首先,,利用深度卷積神經(jīng)網(wǎng)絡(luò)(DCNN)剔除線狀地物(道路、田埂等),,然后,,通過引入遷移學(xué)習(xí)機(jī)制將DCNN特征訓(xùn)練過程 中得到的特征提取方法遷移到耕地提取中,最后,,將所提方法與利用易康(eCognition)軟件進(jìn)行耕地提?。‥CLE)結(jié)果進(jìn)行對(duì)比。研究結(jié)果表明:對(duì)于實(shí)驗(yàn)影像1,、2,,TLCLE方法耕地提取總體精度分別為91.9%,、88.1%,,ECLE方法總體精度分別為90.3%、88.3%,,2種方法提取精度相當(dāng),,在保證耕地地塊完整、連續(xù)性上TLCLE方法優(yōu)于ECLE方法,。

    Abstract:

    The development of precision agriculture demands high accuracy and efficiency of cultivated land information extraction. Due to the low spatial resolution of satellite remote sensing images, it is difficult to identify cultivated land of small areal extent in critical regions, which requires image data of high spatial resolution for specific or general cases. Simultaneously, unmanned aerial vehicle (UAV) has been increasingly used for natural resource applications in recent years as a result of their great availabilities, the miniaturization of sensors, and the ability to deploy UAV relatively quickly and repeatedly at low altitudes. But most UAV images lack spectral information and cultivated land information extraction which usually leads to an unsatisfactory result. Based on this, a novel cultivated land information extraction method based on transfer learning (TLCLE) was proposed. Firstly, linear features (roads and ridges, etc.) were rejected based on deep convolutional neural network (DCNN). Secondly, feature extraction method learned from DCNN was used for extracting cultivated land information by introducing transfer learning mechanism. Finally, cultivated land information extraction results were completed by the TLCLE method and eCognition software for cultivated land information extraction (ECLE). The experimental results show that TLCLE can obtain equivalent accuracy to ECLE, and it outperforms ECLE in terms of guaranteeing the integrity and continuity of cultivated land information.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

魯恒,付蕭,賀一楠,李龍國,莊文化,劉鐵剛.基于遷移學(xué)習(xí)的無人機(jī)影像耕地信息提取方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2015,46(12):274-279284. Lu Heng, Fu Xiao, He Yi’nan, Li Longguo, Zhuang Wenhua, Liu Tiegang. Cultivated Land Information Extraction from High Resolution UAV Images Based on Transfer Learning[J]. Transactions of the Chinese Society for Agricultural Machinery,2015,46(12):274-279284.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2015-09-09
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2015-12-10
  • 出版日期:
文章二維碼