ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于高光譜成像的綠皮馬鈴薯檢測方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學(xué)基金項目(61275156)和湖北省自然科學(xué)基金重點項目(2011CDA033)


Detection Method of Green Potato Based on Hyperspectral Imaging
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對任意放置姿態(tài)下的輕微綠皮馬鈴薯難以檢測的問題,進行了半透射與反射高光譜成像方式的不同檢測方法比較研究,,最終確定較優(yōu)高光譜成像方式的檢測方法,。分別以半透射與反射高光譜成像方式對圖像維提取RGB,、HSV和Lab空間顏色信息,,并采用等距映射,、最大方差展開,、拉普拉斯特征映射進行圖像信息降維,;分別以半透射與反射高光譜成像方式對光譜維提取感興趣區(qū)域的平均光譜數(shù)據(jù),,并采用局部保持投影,、局部切空間排列、局部線性協(xié)調(diào)進行光譜信息降維,;然后分別建立不同高光譜成像方式下的圖像與光譜信息的深度信念網(wǎng)絡(luò)模型,;對識別率良好的模型采用多源信息融合技術(shù)進一步優(yōu)化,并建立基于圖像和光譜融合或不同成像方式融合的模型,。結(jié)果表明,,基于半透射和反射高光譜的光譜信息融合模型最優(yōu),校正集和測試集識別率均達到100%,,可實現(xiàn)輕微綠皮馬鈴薯的無損檢測,。

    Abstract:

    To solve the problems of difficulties in detecting the slightly green potatoes placed randomly, two detection methods were compared based on the semitransmission and reflection hyperspectral imaging technologies and then a more optimal detection method was determined. 225 potatoes samples were selected, including 122 normal samples and 103 green samples. Semitransmission and reflection hyperspectral imaging technologies were used to extract the RGB, HSV and Lab color information from the image; the isometric mapping (Isomap), the maximum variance unfolding (MVU) and the Laplacian feature mapping (LE) were utilized to reduce the dimension of image information. Semitransmission and reflection hyperspectral imaging technologies were used to extract the average spectrum from the spectral region of interest; the linearity preserving projection (LPP), the local tangent space alignment (LTSA) and the locally linear coordination(LLC) were utilized to reduce the dimension of spectral information. The deep belief networks (DBN) model which is a kind of deep learning approach was developed based on the image and spectrums of different hyperspectral imaging ways. The multisource information fusion technology was used to optimize the model with a high detection accuracy and different detection models were built based on different ways of imaging or the fusion of image and spectrum. The results show that the fusion model, which is developed based on the semitransmission hyperspectral imaging and the reflection hyperspectral imaging, is the best option. Its detection rate can reach 100% in both the calibration and the validation. Nondistractive detecting of the slightly green potatoes can be realized with this fusion model.

    參考文獻
    相似文獻
    引證文獻
引用本文

李小昱,庫靜,顏伊蕓,徐夢玲,徐森淼,金瑞.基于高光譜成像的綠皮馬鈴薯檢測方法[J].農(nóng)業(yè)機械學(xué)報,2016,47(3):228-233. Li Xiaoyu, Ku Jing, Yan Yiyun, Xu Mengling, Xu Senmiao, Jin Rui. Detection Method of Green Potato Based on Hyperspectral Imaging[J]. Transactions of the Chinese Society for Agricultural Machinery,2016,47(3):228-233.

復(fù)制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2015-08-10
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2016-03-10
  • 出版日期:
文章二維碼