ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于EMD和ELM的工廠化育苗水溫組合預(yù)測(cè)模型
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金項(xiàng)目(61471133,、61571444、61473331)、“十二五”國(guó)家科技支撐計(jì)劃項(xiàng)目(2012BAD35B07)、廣東省科技計(jì)劃項(xiàng)目(2013B090500127、2013B021600014,、2015A070709015、2015A020209171)、廣東省自然科學(xué)基金項(xiàng)目(S2013010014629,、2014A030307049)和廣東海洋大學(xué)創(chuàng)新強(qiáng)校工程項(xiàng)目(GDOU2014050227)


Combined Prediction Model of Water Temperature in Industrialized Cultivation Based on Empirical Mode Decomposition and Extreme Learning Machine
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)南美白對(duì)蝦工廠化育苗水溫時(shí)序數(shù)據(jù)存在非線性、非平穩(wěn)等特點(diǎn),采用傳統(tǒng)單項(xiàng)預(yù)測(cè)方法預(yù)測(cè)精度低,、魯棒性差等問(wèn)題,,提出基于經(jīng)驗(yàn)?zāi)B(tài)分解(EMD)、相空間重構(gòu)和極限學(xué)習(xí)機(jī)(ELM)的非線性組合預(yù)測(cè)模型,。在建模過(guò)程中,,采用EMD方法將工廠化育苗水溫原始時(shí)序數(shù)據(jù)多尺度分解為一系列固有模態(tài)分量(IMF),并對(duì)各分量進(jìn)行相空間重構(gòu),,在相空間中對(duì)ELM訓(xùn)練建模,,分別對(duì)各IMF序列進(jìn)行預(yù)測(cè),將各分量預(yù)測(cè)結(jié)果進(jìn)行疊加重構(gòu)得到原始水溫序列的預(yù)測(cè)值,。將該模型應(yīng)用于廣東省湛江市南美白對(duì)蝦工廠化育苗水溫預(yù)測(cè)中,,結(jié)果表明,該模型取得了較好預(yù)測(cè)效果,。與BP神經(jīng)網(wǎng)絡(luò),、標(biāo)準(zhǔn)LSSVR和標(biāo)準(zhǔn)ELM等單項(xiàng)預(yù)測(cè)模型對(duì)比分析,模型評(píng)價(jià)指標(biāo)MAPE,、RMSE和MAE分別為0.0158,、0.0329和0.0962,均表明提出的組合模型具有較高預(yù)測(cè)精度和泛化性能,,為南美白對(duì)蝦工廠化育苗水溫調(diào)控管理提供了一種有效的技術(shù)支持,。

    Abstract:

    Since the sequence data of water temperature in industrialized Litopenaeus vannamei breeding is somehow non-linear, unsteady, and such problems like lower precision in the predicting results, low robustness will appear when utilizing the traditional single item predicting method, a combined non-linear prediction model based on empirical mode decomposition (EMD), phase space reconstruction and extreme learning machine (ELM) was proposed. In modeling, the EMD method was adopted to decompose the original time sequence data of water temperature in industrialized Litopenaeus vannamei breeding into a series of intrinsic mode function (IMF), and reconstruct the phase space of each component, set models of ELM training in phase space, predict each IMF sequence, and then combine and reconstruct the predicted values of each component to get the predicted value of original water temperature sequence. EMD—ELM was tested and compared with other algorithms by applying it to predict water temperature in industrialized Litopenaeus vannamei breeding pond of Zhanjiang City. The experimental results showed that the proposed combination prediction model of EMD—ELM had better prediction effect than the standard extreme learning machine (ELM), least squares support vector regression (LSSVR) and BP neural network methods. And the relative mean absolute percentage error (MAPE), root mean square error (RMSE) and mean absolute error (MAE) between the EMD—ELM and standard LSSVR models were 62.82%、45.62% and 42.77%, respectively, under the same experimental conditions. The relative MAPE, RMSE and MAE between the EMD—ELM and standard ELM models were 34.44%,、28.94% and 25.37%, respectively. The relative MAPE, RMSE and MAE between the EMD—ELM and BPNN models were 77.0%,、60.83% and 54.77%, respectively. It was obvious that the EMD—ELM had high forecast accuracy and generalization ability. The research results provided a new effective technical support for water temperature management and control in the industrialized cultivation of Litopenaeus vannamei.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

徐龍琴,張軍,李乾川,劉雙印,李道亮.基于EMD和ELM的工廠化育苗水溫組合預(yù)測(cè)模型[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(4):265-271,308. Xu Longqin, Zhang Jun, Li Qianchuan, Liu Shuangyin, Li Daoliang. Combined Prediction Model of Water Temperature in Industrialized Cultivation Based on Empirical Mode Decomposition and Extreme Learning Machine[J]. Transactions of the Chinese Society for Agricultural Machinery,2016,47(4):265-271,308.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2015-11-01
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2016-04-10
  • 出版日期: 2016-04-10
文章二維碼