ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

自然光照下基于粒子群算法的農(nóng)業(yè)機械導(dǎo)航路徑識別
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學(xué)基金項目(31571570)和國家國際科技合作專項(2015DFG12280)


Guidance Line Recognition of Agricultural Machinery Based on Particle Swarm Optimization under Natural Illumination
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對農(nóng)業(yè)機械視覺導(dǎo)航線提取易受光照變化影響及常規(guī)導(dǎo)航線識別算法實時性低,、抗干擾能力差等問題,,對自然光照條件下基于機器視覺的農(nóng)業(yè)機械導(dǎo)航路徑識別技術(shù)進行了研究,。首先,在YCrCb顏色模型的基礎(chǔ)上構(gòu)建與光照無關(guān)的Cg分量,,選擇2Cg—Cr—Cb特征因子對圖像進行灰度化處理,以降低光照變化對圖像分割的影響,;然后,,采用改進Kmeans聚類方法進行圖像分割,將綠色作物信息從土壤背景中分離出來,并通過形態(tài)學(xué)濾波方法濾除二值圖像中存在的雜草干擾信息,;最后,,根據(jù)圖像中作物行的特點建立作物行直線方程約束模型,利用粒子群算法對作物行直線進行尋優(yōu)求解,,進而得到導(dǎo)航線,。實驗結(jié)果表明,不同光照條件下對2Cg—Cr—Cb灰度圖像進行圖像分割,,可以清晰完整地將作物從土壤背景中分離出來,,分割圖像受光照變化影響較小并且不會引入背景噪聲;基于粒子群算法的導(dǎo)航線檢測方法可以快速準(zhǔn)確地提取出導(dǎo)航路徑,,對于不同農(nóng)田作物和作物不同生長階段具有較高的適應(yīng)性,,相比于常規(guī)導(dǎo)航線識別算法具有實時性高、魯棒性好等優(yōu)點,。

    Abstract:

    In farmland with complex environment, guidance line recognition of agricultural machinery based on machine vision is subjected to illumination variation, weed noise, etc. In addition, the conventional path detection algorithms have the drawbacks of low processing speed and poor anti-interference. The visual navigation path detection under natural environment was conducted. Firstly, to reduce the influence of illumination changes on the quality of image segmentation, Cg component was constructed on the base of YCrCb color mode and the 2Cg—Cr—Cb factor was selected to preprocess the image. Secondly, the clustering segmentation of the image was performed based on improved K-means algorithm to achieve the respective clusters of soil and green crop information. Then, the weed interference information in the binary image was eliminated by morphological filtering algorithm so as to obtain the complete and clear crop information. Finally, according to the characteristics of the crop rows in the image, linear equation constraints of crop rows were established. An algorithm of crop lines detection based on particle swarm optimization (PSO) was designed. Experiment results showed that the image segmentation based on 2Cg—Cr—Cb gray image can effectively identify crop from soil background under different illumination conditions. The segmentation images were less affected by change of illumination and no background noise was contained. The guidance line recognition method based on PSO can quickly and accurately detect the navigation line. Furthermore, it had good fitness for different crops and nice adaptability for different crop growth stages in the farmland. Compared with conventional guidance line recognition algorithms, the designed algorithm had the advantages of high speed and good robustness.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

孟慶寬,張漫,楊耿煌,仇瑞承,項明.自然光照下基于粒子群算法的農(nóng)業(yè)機械導(dǎo)航路徑識別[J].農(nóng)業(yè)機械學(xué)報,2016,47(6):11-20. Meng Qingkuan, Zhang Man, Yang Genghuang, Qiu Ruicheng, Xiang Ming. Guidance Line Recognition of Agricultural Machinery Based on Particle Swarm Optimization under Natural Illumination[J]. Transactions of the Chinese Society for Agricultural Machinery,2016,47(6):11-20.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2015-12-04
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2016-06-10
  • 出版日期: 2016-06-10
文章二維碼