ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于機(jī)器視覺(jué)的乘用式智能采茶機(jī)設(shè)計(jì)與試驗(yàn)
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

“十二五”國(guó)家科技支撐計(jì)劃項(xiàng)目(2014BAD06B06)


Design and Experiment of Intelligentized Tea-plucking Machine for Human Riding Based on Machine Vision
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)目前乘用式采茶機(jī)作業(yè)時(shí)對(duì)采摘面的茶芽不能識(shí)別大小,、老嫩茶葉一刀切下的弊端,,設(shè)計(jì)了一種基于機(jī)器視覺(jué)的乘用式采茶機(jī),,提出了嫩茶自動(dòng)識(shí)別與采茶機(jī)割刀的自動(dòng)調(diào)平調(diào)高控制方法。通過(guò)對(duì)采茶機(jī)割臺(tái)的位置伺服和水平度伺服控制,使得割刀面與茶隴蓬面有一個(gè)較好吻合,并能將割臺(tái)與大地水平面保持一致;為了實(shí)現(xiàn)更為精準(zhǔn)地切割,,在采摘面的茶芽識(shí)別時(shí)采用2次最大類間差分法。首先獲取采摘面的圖像,,利用B分量的閾值分割出茶葉區(qū)域,;然后選取G和G-B分量的閾值,從茶葉區(qū)域中再分割出嫩茶區(qū)域,;最后計(jì)算采摘面上嫩茶部分所占面積比例,,以70%作為視覺(jué)伺服的控制基準(zhǔn)。試驗(yàn)研究表明,,提出的基于機(jī)器視覺(jué)的乘用式采茶機(jī)的嫩茶自動(dòng)識(shí)別與采茶機(jī)割刀的自動(dòng)調(diào)平調(diào)高控制方法能有效解決目前機(jī)采茶葉老嫩一刀切下的弊端,,為今后全自動(dòng)化茶葉采摘奠定了基礎(chǔ)。

    Abstract:

    Presently, teaplucking machine has a disadvantage that it cuts indiscriminately without identification of the tender tea. In order to solve this problem, a kind of teaplucking machine was designed based on machine vision. A method was put forward to cut intelligently fused with position servo, visual servo and levelness servo. The cutting line was kept consistently with tea ridge and the header of machine was consistent with horizontal plane by levelness servo. The initial height of the cutter was set by position servo. In order to make the cutting more precise, PID algorithm was used to obtain highly subtle measurements. In terms of visual servo inspection, firstly, tea images of picking surface were taken and the threshold of B component in RGB was used to eliminate background and segment the range of tea. Secondly, the thresholds of G and G-B components were analyzed to distinguish tender leaves from the image by improved OSTU (the algorithm of threshold automatically extracted according to the maximum deviation). Template matched method and threshold of R component were useful to identify cutter line. Finally, the proportion of tender leaves area above cutter line in the image was calculated and its height was adjusted to ensure the ratio above 70%. Experimental result shows that the proposed method solves present disadvantages of teaplucking machine effectively. Also, the efficiency of picking was improved with reduced labor cost.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

湯一平,韓旺明,胡安國(guó),王偉羊.基于機(jī)器視覺(jué)的乘用式智能采茶機(jī)設(shè)計(jì)與試驗(yàn)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(7):15-20. Tang Yiping, Han Wangming, Hu Anguo, Wang Weiyang. Design and Experiment of Intelligentized Tea-plucking Machine for Human Riding Based on Machine Vision[J]. Transactions of the Chinese Society for Agricultural Machinery,2016,47(7):15-20.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2016-01-11
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2016-07-10
  • 出版日期: 2016-07-10
文章二維碼