ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

視覺導(dǎo)引AGV魯棒特征識別與精確路徑跟蹤研究
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學(xué)基金項目(61105114)、江蘇省科技支撐計劃項目(BE2014137)、中國博士后科學(xué)基金項目(2015M580421),、江蘇省博士后科研計劃項目(1501103C),、中央高?;究蒲袠I(yè)務(wù)費專項資金項目(NS2016050)和南京航空航天大學(xué)研究生創(chuàng)新基地(實驗室)開放基金項目(KFJJ20150519)


Robust Feature Recognition and Precise Path Tracking for Vision-guided AGV
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對AGV多分支路徑與工位點標(biāo)識的可靠識別以及導(dǎo)引路徑的精確跟蹤問題,提出了一種基于雙視野窗口的魯棒特征識別與精確路徑跟蹤方法,。采用整幅視野范圍作為模式識別窗口,在該窗口采用基于核主成分分析(KPCA)和BP神經(jīng)網(wǎng)絡(luò)的識別方法,,將路徑特征通過核函數(shù)映射到高維空間進行PCA降維,,再利用BP神經(jīng)網(wǎng)絡(luò)識別降維后的樣本矩陣。同時提出一種導(dǎo)引掃描窗口設(shè)置方法,,該窗口范圍取決于攝像機豎直視角以及攝像機安裝傾斜角,,在導(dǎo)引掃描窗口內(nèi)將導(dǎo)引路徑簡化為直線模型并用最小二乘法擬合,針對擬合直線計算導(dǎo)引所需的路徑偏差,。實驗結(jié)果表明,,KPCA-BP方法顯著提高了路徑特征識別的實時性和魯棒性,6類路徑特征的平均特征識別正確率為99.5%,;導(dǎo)引掃描窗口有效減小了導(dǎo)引路徑直線擬合的計算誤差,,直線路徑跟蹤誤差小于3mm,曲線路徑跟蹤誤差小于30mm,。

    Abstract:

    An approach of robust feature recognition and precise path tracking based on two visual field windows was proposed for an AGV to identify multibranch paths and station point reliably, and to follow guide paths accurately. The whole visual field was used as a pattern recognition window, in which a recognition method based on kernel principal component analysis (KPCA) and BP neural network was developed. Path features were mapped to a highdimensional space by using the kernel function and then their dimensionalities were reduced by using PCA. After dimensionality reduction, the sample matrices were recognized by utilizing a BP neural network. Besides, a scaling window method based on a vertical view angle and a tilt installation angle of a camera was suggested for a guidance scanning window. In this window, guide paths were simplified according to a linear model and fitted by using the least square method. Path deviations with respect to the fitted straight line were estimated for AGV guidance. Experimental results show that the KPCA-BP approach improves the realtime performance and robustness of path feature recognition significantly, the average correct rate of which is 99.5% for six types of landmark feature, and that the guidance scanning window decreases the computing error resulted from linear fitting of guide paths effectively, the tracking error of which is no more than 3mm for linear path and 30mm for curvilinear path.

    參考文獻
    相似文獻
    引證文獻
引用本文

武 星,沈偉良,樓佩煌,王龍軍.視覺導(dǎo)引AGV魯棒特征識別與精確路徑跟蹤研究[J].農(nóng)業(yè)機械學(xué)報,2016,47(7):48-56. Wu Xing, Shen Weiliang, Lou Peihuang, Wang Longjun. Robust Feature Recognition and Precise Path Tracking for Vision-guided AGV[J]. Transactions of the Chinese Society for Agricultural Machinery,2016,47(7):48-56.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2016-01-23
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2016-07-10
  • 出版日期: 2016-07-10
文章二維碼