ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于稀疏非負(fù)最小二乘編碼的高光譜遙感數(shù)據(jù)分類方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

甘肅省自然科學(xué)基金項(xiàng)目(145RJZA183)


Hyperspectral Remote Sensing Data Classification Method Based on Sparse Non-negative Leastsquares Coding
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為了提高高光譜遙感影像的分類精度,,提出了一種基于稀疏非負(fù)最小二乘編碼的高光譜數(shù)據(jù)分類方法。采用非負(fù)最小二乘方法,將待測(cè)樣本表示為訓(xùn)練樣本的線性組合,,并將得到的系數(shù)作為待測(cè)樣本的特征向量,通過最小誤差方法對(duì)待測(cè)樣本進(jìn)行分類,。提出的方法在AVIRIS Indian Pines和薩利納斯山谷高光譜遙感數(shù)據(jù)集上進(jìn)行分類實(shí)驗(yàn),,并和主成分分析(PCA)、支持向量機(jī)(SVM)和基于稀疏表示分類器(SRC)方法進(jìn)行比較,,在2個(gè)數(shù)據(jù)集上本文方法的總體識(shí)別精度分別達(dá)到85.31%和99.56%,,Kappa系數(shù)分別為0.8163和0.9867。實(shí)驗(yàn)結(jié)果表明本文方法的總體識(shí)別精度和Kappa系數(shù)都優(yōu)于另外3種方法,,是一種較好的高光譜遙感數(shù)據(jù)分類方法,。

    Abstract:

    In order to improve the classification accuracy and reduce computation complexity, a hyperspectral remote sensing data classification method based on sparse nonnegative leastsquares coding was proposed. By adopting nonnegative leastsquares, the test samples were expressed as a linear combination of training samples, and the obtained coefficients were used as its feature vector. As a result of the nonnegative constraint, the feature vectors were sparse, which can not only improve the efficiency of the proposed algorithm, but also enhance the discrimination performance of algorithm. At last, the minimizing residual was used to classify the test samples. The experimental verifications of the proposed method were carried out on AVIRIS Indian Pines and Salinas Valley hyperspectral remote sensing data, the classification accuracies of the proposed method were 85.31% and 99.56%, and the Kappa coefficients were 0.8163 and 0.9867, respectively. The proposed method was compared with PCA, SVM and SRC in terms of classification accuracy and Kappa coefficients on two databases, experiment results showed that the proposed method was superior to PCA, SVM and SRC. The proposed approach was valuable for hyperspectral data classification with low computational cost and high classification accuracy, it was a better method of hyperspectral remote sensing data classification.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

齊永鋒,楊 樂,火元蓮.基于稀疏非負(fù)最小二乘編碼的高光譜遙感數(shù)據(jù)分類方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(7):332-337. Qi Yongfeng, Yang Le, Huo Yuanlian. Hyperspectral Remote Sensing Data Classification Method Based on Sparse Non-negative Leastsquares Coding[J]. Transactions of the Chinese Society for Agricultural Machinery,2016,47(7):332-337.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2015-12-09
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2016-07-10
  • 出版日期: 2016-07-10
文章二維碼